ACS Combinatorial Science
Letter
quin, L. F.; Boyle, F. T.; Wardleworth, J. M.; Marsham, P. R.; Kimbell,
R.; Jackman, A. L. Quinazoline Antifolates Thymidylate Synthase
Inhibitors: Lipophilic Analogues with Modification to the C2-Methyl
Substituent. J. Med. Chem. 1996, 39, 695−704. (c) Connolly, D. J.;
Guiry, P. J. A Facile and Versatile Route to 2-Substituted-4(3H)-
quinazolinones and Quinazolines. Synlett 2001, 1707−1710. (d) Con-
nolly, D. J.; Cusack, D.; O'Sullivan, T. P.; Guiry, P. J. Synthesis of
Quinazolinones and Quinazolines. Tetrahedron 2005, 61, 10153−
10202.
Rh(I)-catalyzed CO Gas-free Carbonylative Cyclization Reactions of
Alkynes with 2-Bromophenylboronic Acids using Formaldehyde. Org.
Lett. 2009, 11, 1777−1780. (d) Li, W.; Wu, X.-F. Palladium-catalyzed
Carbonylative Synthesis of Benzoxazinones from N-(o-Bromoaryl)-
amides using Paraformaldehyde as the Carbonyl Source. J. Org. Chem.
2014, 79, 10410−10416. (e) Natte, K.; Dumrath, A.; Neumann, H.;
Beller, M. Palladium-catalyzed Carbonylations of Aryl Bromides using
Paraformaldehyde: Synthesis of Aldehydes and Esters. Angew. Chem.,
Int. Ed. 2014, 53, 10090−10094.
(4) (a) Picos-Corrales, L. A.; Sarmiento-Sanchez, J. I. Microwave-
assisted Synthesis of Benzoxazinediones under Solvent-free Con-
ditions. Chem. Heterocycl. Compd. 2018, 54, 762−764. (b) Maiden, T.
M. M.; Harrity, J. P. A. Recent Developments in Transition Metal
Catalysis for Quinazolinone Synthesis. Org. Biomol. Chem. 2016, 14,
8014−8025. (c) Abdou, I. M.; Al-Neyadi, S. S. Synthesis and
Antimicrobial Evaluation of Newly Synthesized N,S-bisphosphonate
Derivatives. Heterocycl. Commun. 2015, 21, 115−132. (d) Rohokale,
R. S.; Kshirsagar, U. A. Advanced Synthetic Strategies for
Constructing Quinazolinone Scaffolds. Synthesis 2016, 48, 1253−
1268. (e) He, L.; Li, H.; Chen, J.; Wu, X.-F. Recent Advances in
4(3H)-Quinazolinone Syntheses. RSC Adv. 2014, 4, 12065−12077.
(8) (a) Qi, X.; Jiang, L.-B.; Li, C.-L.; Li, R.; Wu, X.-F. Palladium-
catalyzed One-pot Carbonylative Sonogashira Reaction Employing
Formic Acid as the CO Source. Chem. - Asian J. 2015, 10, 1870−
1873. (b) Qi, X.; Jiang, L.-B.; Li, H.-P.; Wu, X.-F. A Convenient
Palladium-catalyzed Carbonylative Suzuki Coupling of Aryl Halides
with Formic Acid as the Carbon Monoxide Source. Chem. - Eur. J.
2015, 21, 17650−17656. (c) Qi, X.; Li, H.-P.; Wu, X.-F. A
Convenient Palladium-catalyzed Carbonylative Synthesis of Benzofur-
an-2(3H)-ones with Formic Acid as the CO Source. Chem. - Asian J.
2016, 11, 2453−2457. (d) Qi, X.; Li, C.-L.; Jiang, L.-B.; Zhang, W.-
Q.; Wu, X.-F. Palladium-catalyzed Alkoxycarbonylation of Aryl
Halides with Phenols Employing Formic Acid as the CO Source.
Catal. Sci. Technol. 2016, 6, 3099−3107. (e) Jiang, L.-B.; Li, R.; Li, H.-
P.; Qi, X.; Wu, X.-F. Palladium-catalyzed Carbonylative Synthesis of
Aryl Formates under Mild Conditions. ChemCatChem 2016, 8, 1788−
1791. (f) Qi, X.; Li, C.-L.; Wu, X.-F. A Convenient Palladium-
catalyzed Reductive Carbonylation of Aryl Iodides with Dual Role of
Formic Acid. Chem. - Eur. J. 2016, 22, 5835−5838. (g) Qi, X.; Li, R.;
Wu, X.-F. Selective Palladium-catalyzed Carbonylative Synthesis of
Aurones with Formic Acid as the CO Source. RSC Adv. 2016, 6,
62810−62813. (h) Jiang, L.-B.; Qi, X.; Wu, X.-F. Manganese-
catalyzed Sonogashira Coupling of Aryl Iodides. Tetrahedron Lett.
2016, 57, 3368−3370. (i) Li, H.-P.; Ai, H.-J.; Qi, X.; Peng, J.-B.; Wu,
X.-F. Palladium-catalyzed Carbonylative Synthesis of Benzofuran-
2(3H)-ones from 2-Hydroxybenzyl Alcohols using Formic Acid as the
CO Source. Org. Biomol. Chem. 2017, 15, 1343−1345. (j) Wu, F.-P.;
Peng, J.-B.; Meng, L.-S.; Qi, X.; Wu, X.-F. Palladium-catalyzed Ligand-
controlled Selective Synthesis of Aldehydes and Acids from Aryl
Halides and Formic Acid. ChemCatChem 2017, 9, 3121−3124.
(k) Wu, F.-P.; Peng, J.-B.; Qi, X.; Wu, X.-F. Palladium-catalyzed
Carbonylative Sonogashira Coupling of Aryl Diazonium Salts with
Formic Acid as the CO Source: the Effect of 1,3-Butadiene. Catal. Sci.
Technol. 2017, 7, 4924−4928. (l) Peng, J.-B.; Wu, F.-P.; Li, C.-L.; Qi,
X.; Wu, X.-F. A Convenient and Efficient Palladium-catalyzed
Carbonylative Sonogashira Transformation with Formic Acid as the
CO Source. Eur. J. Org. Chem. 2017, 2017, 1434−1437. (m) Wu, F.-
P.; Peng, J.-B.; Qi, X.; Wu, X.-F. Palladium-catalyzed Carbonylative
Transformation of Organic Halides with Formic Acid as the Coupling
Partner and CO Source: Synthesis of Carboxylic Acids. J. Org. Chem.
2017, 82, 9710−9714. (n) Wu, F.-P.; Peng, J.-B.; Fu, L.-Y.; Qi, X.;
Wu, X.-F. Direct Palladium-catalyzed Carbonylative Transformation
of Allylic Alcohols and Related Derivatives. Org. Lett. 2017, 19, 5474−
5477. (o) Qi, X.; Ai, H.-J.; Zhang, N.; Peng, J.-B.; Ying, J.; Wu, X.-F.
Palladium-catalyzed Carbonylative Bis(indolyl)methanes Synthesis
with TFBen as the CO Source. J. Catal. 2018, 362, 74−77.
(p) Wu, F.-P.; Peng, J.-B.; Qi, X.; Wu, X.-F. Palladium-catalyzed
Carbonylative Homocoupling of Aryl Iodides for the Synthesis of
Symmetrical Diaryl Ketones with Formic Acid. ChemCatChem 2018,
10, 173−177.
(5) For selected recent reviews, see: (a) Brennfuhrer, A.; Neumann,
̈
H.; Beller, M. Palladium-catalyzed Carbonylation Reactions of Aryl
Halides and Related Compounds. Angew. Chem., Int. Ed. 2009, 48,
4114−4133. (b) Peng, J.-B.; Qi, X.; Wu, X.-F. Visible Light-induced
Carbonylation Reactions with Organic Dyes as the Photosensitizers.
ChemSusChem 2016, 9, 2279−2283. (c) Liu, Q.; Zhang, H.; Lei, A.
Copper-catalyzed Cross-coupling Reaction of Organoboron Com-
pounds with Primary Alkyl Halides and Pseudohalides. Angew. Chem.,
Int. Ed. 2011, 50, 10788−10799. (d) Gabriele, B.; Mancuso, R.;
Salerno, G. Oxidative Carbonylation as a Powerful Tool for the Direct
Synthesis of Carbonylated Heterocycles. Eur. J. Org. Chem. 2012,
2012, 6825−6839. (e) Peng, J.-B.; Qi, X.; Wu, X.-F. Recent
Achievements in Carbonylation Reactions: A Personal Account.
Synlett 2017, 28, 175−194. (f) Wu, X.-F. Palladium-catalyzed
Carbonylative Transformation of Aryl Chlorides and Aryl Tosylates.
RSC Adv. 2016, 6, 83831−83837. (g) Peng, J.- B.; Wu, F.-P.; Wu, X.-
F. First-row Transition-metal-catalyzed Carbonylative Transforma-
tions of Carbon Electrophiles. Chem. Rev. 2019, 119, 2090−2127.
(6) (a) Chen, J.; Natte, K.; Wu, X.-F. Palladium-catalyzed
Carbonylative Cyclization of Arenes by C-H Bond Activation with
DMF as the Carbonyl Source. J. Organomet. Chem. 2016, 803, 9−12.
(b) Kim, D.-S.; Park, W.-J.; Lee, C.-H.; Jun, C.-H. Hydroesterification
of Alkenes with Sodium Formate and Alcohols Promoted by
Cooperative Catalysis of Ru3(CO)12 and 2-Pyridinemethanol. J. Org.
Chem. 2014, 79, 12191−12196. (c) Wu, X.-F.; Oschatz, S.; Sharif, M.;
Flader, A.; Krey, L.; Beller, M.; Langer, P. Palladium-catalyzed
Carbonylative Synthesis of Phthalimides from 1,2-Dibromoarenes
with Molybdenum Hexacarbonyl as Carbon Monoxide Source. Adv.
Synth. Catal. 2013, 355, 3581−3585. (d) Wu, X.-F.; Sharif, M.;
Shoaib, K.; Neumann, H.; Pews-Davtyan, A.; Langer, P.; Beller, M. A
Convenient Palladium-catalyzed Carbonylative Synthesis of 2-
Aminbenzoxazinones from 2-Bromoanilines and Isocyanates. Chem.
- Eur. J. 2013, 19, 6230−6233. (e) Jafarpour, F.; Rashidi-Ranjbar, P.;
Kashani, A. O. Easy-to-execute Carbonylative Arylation of Aryl
Halides Using Molybdenum Hexacarbonyl: Efficient Synthesis of
Unsymmetrical Diaryl Ketones. Eur. J. Org. Chem. 2011, 2011, 2128−
2132. (f) Nordeman, P.; Odell, L. R.; Larhed, M. Synthesis of 4-
Quinolonesvia a Carbonylative Sonogashira Cross-coupling using
Molybdenum Hexacarbonyl as a CO Source. J. Org. Chem. 2012, 77,
11393−11398.
(9) (a) Formenti, D.; Ferretti, F.; Ragaini, F. Synthesis of N-
Heterocycles by Reductive Cyclization of Nitro Compounds using
Formate Esters as Carbon Monoxide Surrogates. ChemCatChem
2018, 10, 148−152. (b) Konishi, H.; Nagase, H.; Manabe, K. Concise
Synthesis of Cyclic Carbonyl Compounds from Haloarenes using
Phenyl Formate as the Carbonyl Source. Chem. Commun. 2015, 51,
1854−1857. (c) Wang, Y.; Ren, W.; Li, J.; Wang, H.; Shi, Y. Facile
Palladium-catalyzed Hydrocarboxylation of Olefins without External
CO Gas. Org. Lett. 2014, 16, 5960−5963. (d) Li, H.; Neumann, H.;
Beller, M.; Wu, X.-F. Aryl Formate as Bifunctional Reagent:
Applications in Palladium-catalyzed Carbonylative Coupling Reac-
(7) (a) Morimoto, T.; Fuji, K.; Tsutsumi, K.; Kakiuchi, K. CO-
transfer Carbonylation Reactions. A Catalytic Pauson-Khand-type
Reaction of Enynes with Aldehydes as a Source of Carbon Monoxide.
J. Am. Chem. Soc. 2002, 124, 3806−3807. (b) Shibata, T.; Toshida,
N.; Takagi, K. Catalytic Pauson-Khand-type Reaction using
Aldehydes as a CO Source. Org. Lett. 2002, 4, 1619−1621.
(c) Morimoto, T.; Yamasaki, K.; Hirano, A.; Tsutsumi, K.; Kagawa,
N.; Kakiuchi, K.; Harada, Y.; Fukumoto, Y.; Chatani, N.; Nishioka, T.
D
ACS Comb. Sci. XXXX, XXX, XXX−XXX