B. C. Austad et al. / Tetrahedron 58 .2002) 2011±2026
2019
spiroketal 9. Trace amounts of the 1,5-dioxaspiro[4,4]-
nonane were also observed. Data for symmetrical spiroketal
NMR #CDCl3, 75.4 MHz) d 171.0 #C), 138.3 #C), 128.3
#CH), 127.9 #CH), 127.6 #CH), 96.6 #C), 73.1 #CH2), 71.9
#CH), 68.0 #CH), 66.7 #CH2), 37.5 #CH2), 31.7 #CH2), 28.7
#CH), 20.8 #CH3), 17.0 #CH3).
22
8a: Rf 0.65 #1:1 EtOAc/CH2Cl2, PAA); [a]D 259.7
#c1.52, benzene); mp 108±1098C; IR #thin ®lm) 3427
#br), 3032, 2954, 1454, 1205, 1103, 987, 743, 698 cm21
;
1H NMR #C6D6, 300 MHz) d 7.05±7.30 #m, 10H), 4.25 #s,
4H), 3.81 #ddd, 2H, J8.8, 4.9, 0.9 Hz), 3.49 #ap dd, 4H,
J6.4, 5.5 Hz), 3.17 #br d, 2H, J5.6 Hz), 1.96±2.15 #m,
4H), 1.79±1.92 #m, 2H), 1.75 #br d, 2H J6.5 Hz), 1.28±
1.42 #ap d, 4H), 0.99 #D, 6H, J5.0 Hz); 13C NMR #CDCl3,
75.4 MHz) d 138.1 #C), 128.2 #CH), 127.6 #CH), 127.5
#CH), 96.5 #C), 72.9 #CH2), 70.3 #CH), 69.4 #CH), 66.7
#CH2), 36.9 #CH2), 31.6 #CH2), 30.0 #CH), 17.4 #CH3);
MS #FAB) m/e #relative intensity, assignment) 485 #100,
M1H1); exact mass calcd for C29H40O61H1 requires
485.286, found 485.3. Data for spiroketal 9: Rf 0.68 #1:1
EtOAc/CH2Cl2, PAA); IR #thin ®lm) 3450 #br), 3030,
2.1.10. Preparation of ꢀ2S,3S,4S,8S,9S,10S)-3,9-di-
hydroxy-2,8-diꢀ2-hydroxyethyl)-4,10-dimethyl-1,7-dioxa-
spiro[5,5]undecane ꢀ10). The thermodynamic mixture of
spiroketals 8a and 9 #8.5 g, 17.5 mmol) was dissolved in
200 mL of absolute ethanol. Catalytic palladium#II)
hydroxide #20 w/w% on carbon, 369 mg, 0.529 mmol)
was suspended in the ethanol solution, and the system was
placed under 1 atm of hydrogen. The reaction was vortexed
with rapid stirring at rt for 12 h, with periodic regeneration
of the hydrogen atmosphere. The resulting mixture was
diluted with 400 mL of CH2Cl2 and ®ltered through a plug
of silica gel. The plug was ¯ushed with 10% MeOH/CH2Cl2,
and the solution was concentrated in vacuo. Residual
hydroxylic solvents were removed azeotropically with
benzene, and the residue was placed under vacuum over-
night to afford a 5:2:1 mixture of tetraol spiroketals 10±12
#5.33 g, 100%). Silica gel chromatography with 3% MeOH/
EtOAc cleanly separated 1,7-dioxaspiro[5,5]undecane ketal
10 from the undesired spiroketals 11 and 12. Data for 1,7-
dioxyspiro[5,5]undecane 10: Rf 0.23 #1:9 MeOH/EtOAc,
1
2954, 2925, 1454, 1097, 981 cm21; H NMR #CDCl3,
300 MHz) d 7.20±7.35 #m, 10H), 4.47 #ABq, 2H,
JAB11.9 Hz, DnAB19.8 Hz), 4.04 #br t, 1H, J6.2 Hz),
3.58±3.68 #m, 2H), 3.45±3.55 #m, 4H), 3.33 #br d, 1H,
J5.3 Hz), 2.61 #d, 1H, J8.3 Hz), 2.49±2.62 #m, 1H),
2.17 #dd, 1H, J12.5, 7.0 Hz), 1.98±2.11 #m, 1H), 1.40±
1.95 #m, 8H), 1.02 #d, 3H, J6.6 Hz), 0.97 #d, 3H,
J6.8 Hz); 13C NMR #CDCl3, 75.4 MHz) d 138.5 #C),
138.1 #C), 128.3 #CH), 127.7 #CH), 127.6 #CH), 127.5
#CH), 105.7 #C), 90.7 #CH), 73.2 #CH2), 72.7 #CH2), 70.3
#CH), 69.9 #CH), 68.7 #CH), 67.3 #CH2), 65.9 #CH2), 47.2
#CH2), 36.2 #CH2), 35.0 #CH2), 32.5 #CH), 31.8 #CH2), 31.5
#CH), 17.7 #CH3), 17.3 #CH3); MS #FAB) m/e #relative
intensity, assignment) 485 #100, M1H1); exact mass
calcd for C29H40O61H1 requires 485.286, found 485.2.
Data for the 1,5-dioxaspiro[4,4]nonane: Rf 0.68 #1:1
EtOAc/CH2Cl2, PAA); IR #thin ®lm) 3450 #br), 3030,
22
PAA); [a]D 2110 #c0.200, MeOH); mp 123±1248C;
IR #thin ®lm) 3363 #br), 2922, 2872 cm21 1H NMR
;
#CD3OD, 300 MHz) d 3.72 #dd, 2H, J10.1, 2.9 Hz),
3.65±3.70 #m, 4H), 3.20 #br d, 2H, J1.5 Hz), 1.96±2.04
#m, 2H), 1.80 #ddt, 2H, J14.5, 10.1, 5.0 Hz), 1.55 #dddd,
2H, J14.5, 7.8, 6.6, 3.3 Hz), 1.35 #AB of ABX, 4H), 0.85
#d, 6H, J6.8 Hz); 13C NMR #CD3OD, 75.4 MHz) d 97.9
#C), 71.7 #CH), 70.2 #CH), 59.8 #CH2), 38.0 #CH2), 35.9
#CH2), 31.6 #CH), 18.1 #CH3); MS #FAB) m/e #relative
intensity, assignment) 305 #100, M1H1), 289 #65,
M1H12H2O); exact mass calcd for C15H28O61H1
requires 305.1523, found 305.1. Data for spiroketal 11: Rf
0.19 #1:9 MeOH/EtOAc, PAA); 1H NMR #CD3OD,
300 MHz) d 3.98 #ddd, 1H, J9.8, 3.6, 0.2 Hz), 3.44±65
#m, 6H), 3.35 #dd, 1H, J8.6, 4.6 Hz), 3.15±3.22 #m, 2H),
2.29±2.46 #m, 1H), 1.90±2.12 #m, 2H), 1.44±1.78 #m, 6H),
1.13±1.42 #m, 3H), 0.94 #d, 3H, J6.6 Hz), 0.85 #d, 3H,
J6.6 Hz); 13C NMR #CD3OD, 75.4 MHz) d 106.7 #C),
94.6 #CH), 71.4 #CH), 70.4 #CH), 70.1 #CH), 60.0 #CH2),
59.1 #CH2), 48.4 #CH2), 37.6 #CH2), 37.2 #CH2), 35.6 #CH2),
33.9 #CH), 32.9 #CH), 18.2 #CH3), 17.6 #CH3). Data for
1
2954, 2925, 1454, 1097, 981 cm21; H NMR #CDCl3,
300 MHz) d 7.20±7.35 #m, 10H), 4.48 #ABq, 4H,
JAB12.0 Hz, DnAB22.7 Hz), 3.57±3.75 #m, 6H), 3.45
#dd, 2H, J8.4, 2.8 Hz), 3.32 #br s, 1.5 H), 2.46±2.63 #m,
2H), 2.12 #dd, 2H, J12.3, 6.8 Hz), 1.67±1.92 #m, 4H), 1.66
#dd, 2H, J12.3, 12.1 Hz), 1.03 #d, 6H, J6.6 Hz); 13C
NMR #CDCl3, 75.4 MHz) d 138.4 #C), 128.4 #CH), 127.6
#CH), 127.5 #CH), 113.7 #C), 89.4 #CH), 73.1 #CH2), 68.8
#CH), 68.0 #CH2), 44.0 #CH2), 35.0 #CH2), 33.5 #CH), 17.5
#CH3).
2.1.9. Preparation of ꢀ2S,3S,4S,8S,9S,10S)-2,8-diꢀ2-
benzyloxyethyl)-3,9-diacetoxy-4,10-dimethyl-1,7-dioxa-
spiro[5,5]undecane ꢀ8b). The spiroketal 8a #10.1 mg,
0.021 mmol) was combined with Ac2O #0.2 mL) in
2.0 mL of pyridine at rt. After 14 h, the products were
diluted with 30 mL of Et2O and washed ®rst with a saturated
CuSO4#aq) and then brine. The organic layer was dried over
MgSO4, ®ltered through a short silica gel plug with addi-
tional Et2O and concentrated in vacuo. Silica gel chromato-
graphy using a 25±50% Et2O/hexanes gradient elution
provided the diacetate as a white solid #9.1 mg, 77%).
Data for 8b: Rf 0.9 #1:9 MeOH/CH2Cl2, PAA); mp 96±
1
spiroketal 12: Rf 0.16 #1:9 MeOH/EtOAc, PAA); H NMR
#CD3OD, 300 MHz) d 4.57 #br s, 4H), 3.52±3.63 #m, 6H),
3.30 #dd, 2H, J8.4, 2.7 Hz), 2.32±2.51 #m, 2H), 2.02 #dd,
2H, J12.3, 6.7 Hz), 1.50±1.73 #m, 6H), 0.96 #d, 6H,
J6.6 Hz); 13C NMR #CD3OD, 75.4 MHz) d 114.8 #C),
90.6 #CH), 68.7 #CH), 60.1 #CH2), 45.1 #CH2), 38.6
#CH2), 34.8 #CH), 17.6 #CH3).
2.1.11. Equilibration to ꢀ2S,3S,4S,8S,9S,10S)-3,9-di-
hydroxy-2,8-diꢀ2-hydroxyethyl)-4,10-dimethyl-1,7-dioxa-
spiro[5,5]undecane ꢀ10). The undesired spiroketal 11
#2.1 g, 6.9 mmol) was dissolved with 50 mL of MeOH in
a round bottom ¯ask equipped with a re¯ux condenser.
Catalytic tri¯ic acid #0.06 mL, 0.78 mmol) was added, and
the system was heated to re¯ux for 50 min. After cooling,
the contents were diluted with 100 mL of benzene and
concentrated in vacuo. The resulting mixture of ketals
1
978C; H NMR #CDCl3, 300 MHz) d 7.21±7.36 #m, 10H),
4.83 #br t, 2H, J1.3 Hz), 4.35 #s, 4H), 3.78 #ddd, 2H,
J9.2, 4.2, 0.9 Hz), 3.48 #t, 4H, J6.9 Hz), 2.12±2.28 #m,
2H), 2.10 #s, 6H), 1.60±1.78 #m, 4H), 1.52 #A of ABX, 2H,
JAB13.4 Hz, JAX4.3 Hz), 1.43 #B of ABX, 2H,
JAB13.4 Hz, JBX10.5 Hz), 1.61 #d, 6H, J7.0 Hz); 13C