Communications to the Editor
J ournal of Medicinal Chemistry, 1998, Vol. 41, No. 26 5147
(5) Low, D. E.; Willey, B. M.; McGeer, A. J . Multidrug-resistant
Enterococci: a Threat to the Surgical Patient. Am. J . Surg. 1995,
5A (Suppl.), 8S-12S.
Dawley rats following single-dose intravenous and oral
administration (Table 3). Both analogues demonstrated
excellent pharmacokinetic profiles. Absolute oral bio-
availability (F) was very good at 92% and 80%, respec-
tively. In addition, blood levels (Cmax) after oral dosing
were high, and the harmonic mean apparent terminal
disposition half-lives (t1/2â) were greater than 5 h for
each drug. Also, the volume of distribution (Vss) was
moderate, and the mean systemic clearance (CL/F) was
low for each analogue (1.18 ( 0.21 mL/min/kg for PNU-
171933 and 1.04 ( 0.29 mL/min/kg for PNU-172576).
In conclusion, in an effort to expand the spectrum of
antibacterial activity of the oxazolidinones to include
Gram-negative organisms, the (azolylphenyl)oxazolidi-
none subclass has been developed. Certain members of
this class have very potent activity versus both Gram-
positive and Gram-negative organisms. In particular,
the 3-cyanopyrrole and 4-cyanopyrazole congeners 3 and
4 (PNU-171933 and PNU-172576) had S. aureus MICs
e 0.5 µg/mL and H. influenzae and M. catarrhalis MICs
) 2-4 µg/mL. In addition, both analogues have out-
standing pharmacokinetic profiles. Furthermore, these
compounds are more effective than linezolid and eper-
ezolid versus S. aureus and S. pneumoniae in mouse
models of human infection. A detailed account of this
work including the SAR of other azole analogues (imi-
dazole, triazole, tetrazole) will be reported in due course.
(6) Spera, R. V., J r.; Farber, B. F. Multidrug-Resistant Enterococcus
faecium: An Untreatable Nosocomial Pathogen. Drugs 1994, 48,
678-688.
(7) Appelbaum, P. C. Antimicrobial Resistance in Streptococcus
Pneumoniae. Clin. Infect. Dis. 1992, 15, 77-83.
(8) J ones, R. N.; Sader, H. S. The Clinical Impact of Enterococcal
Resistance. Challanges Infect. Dis. 1993, 1, 1-5.
(9) Neu, H. C. Quinolone Antimicrobial Agents. Annu. Rev. Med.
1992, 43, 465-468.
(10) Anonymous. Staphlococcus aureus with Reduced Susceptibility
to Vancomycin - United States, 1997. Morbidity Mortality
Weekly Rep. 1997, 46, 765-766.
(11) Hiramatsu, K.; Hanaki, H.; Ino, T.; Yabuta, K.; Oguri, T.;
Tenover, F. C. Methicillin-resistant Staphlococcus aureus Clini-
cal Strain with Reduced Vancomycin Susceptibility. J . Antimi-
crob. Chemother. 1997, 40, 135-136.
(12) Brickner, S. J . Oxazolidinone Antibacterial Agents. Curr. Pharm.
Des. 1996, 2, 175-194.
(13) Lin, A. H.; Murray, R. W.; Vidmar, T. J .; Marotti, K. R. The
Oxazolidinone Eperezolid Binds to the 50S Ribosomal Subunit
and Competes with Binding of Chloramphenicol and Lincomycin.
Antimicrob. Agents Chemother. 1997, 41, 2127-2131.
(14) Shinabarger, D. L.; Marotti, K. R.; Murray, R. W.; Lin, A. H.;
Melchior, E. P.; Swaney, S. M.; Dunyak, D. S.; Demyan, W. F.;
Buysse, J . M. Mechanism of Action of Oxazolidinones: Effects
of Linezolid and Eperezolid on Translation Reactions. Antimi-
crob. Agents Chemother. 1997, 41, 2132-2136.
(15) Brickner, S. J .; Hutchinson, D. K.; Barbachyn, M. R.; Manninen,
P. R.; Ulanowicz, D. A.; Garmon, S. A.; Grega, K. C.; Hendges,
S. K.; Toops, D. S.; Ford, C. W.; Zurenko, G. E. Synthesis and
Antibacterial Activity of U-100592 and U-100726, Two Oxazo-
lidinone Antibacterial Agents for the Potential Treatment of
Multidrug- Resistant Gram-Positive Bacterial Infections. J . Med.
Chem. 1996, 39, 673-679.
Su p p or tin g In for m a tion Ava ila ble: Spectroscopic data
for all new compounds (7 pages). Ordering information is given
on any current masthead page.
(16) Vega, S.; Gil, M. S. Synthesis of 5,6-Dihydro-4H-pyrrolo[1,2-a]-
thieno[2,3-f][1,4]diazepines [1,2]. J . Heterocycl. Chem. 1991, 28,
945-950.
(17) Kim, J . N.; Chung, K. H.; Ryu, E. K. Improved Dehydration
Method of Aldoximes to Nitriles. Use of Acetonitrile in Triph-
enylphosphine/Carbon Tetrachloride System. Synth. Commun.
1990, 20, 2785-2788.
(18) Bertz, S. H.; Dabbagh, G.; Cotte, P. New Preparations of Ethyl
3,3-Diethoxypropionate and (Ethoxycarbonyl)malondialdehyde.
Cu(I)-Catalyzed Acetal Formation from a Conjugated Triple
Bond. J . Org. Chem. 1982, 47, 2216-2217.
Refer en ces
(1) Swartz, M. N. Hospital-acquired Infections: Diseases with
Increasingly Limited Therapies. Proc. Natl. Acad. Sci. U.S.A.
1994, 91, 2420-2427.
(2) Tomasz, A. Multiple-Antibiotic-Resistant Pathogenic Bacteria.
N. Engl. J . Med. 1994, 330, 1247-1251.
(3) Fekete, T. Bacterial Genetics, Antibiotic Usage, and Public
Policy: The Crucial Interplay in Emerging Resistance. Perspect.
Biol. Med. 1995, 38, 363-382.
(19) Holzer, W.; Seiringer, G. N-1 Substituted Ethyl 4-Pyrazolecar-
boxylates: Synthesis and Spectroscopic Investigations. J . Het-
erocycl. Chem. 1993, 30, 865-872.
(4) Brumfitt, W.; Hamilton-Miller, J . M. T. The Challenge of
Methicillin-Resistant Staphylococcus aureus. Drugs Exp. Clin.
Res. 1994, XX, 215-224.
J M980546K