Table 3 Results with CuCO3 ꢀ Cu(OH)2 ꢀ H2O (5 mol %) under opti-
cated Instruments Facility and Organic Chemistry Department
of Indian Institute of Science for 13C NMR spectra and
HRESMS, respectively.
mized conditionsa
Entry
Aryl halide
Phenol
Yield (%)
1
2
3
4
5
6
7
8
4-Bromobenzonitrile
4-Bromobenzonitrile
4-Bromobenzonitrile
4-Bromobenzonitrile
4-Bromobenzonitrile
4-Bromobenzonitrile
Bromobenzene
4-Methylphenol
4-Methoxyphenol
Phenol
4-Chlorophenol
2,4-Dimethylphenol
2,6-Dimethylphenol
4-Methylphenol
4-Methoxyphenol
Phenol
499
499
499
499
72
77
79
81
91
References
1
For examples of medicinally important diaryl ethers, see: D. A.
Evans and K. M. Devries, in Glycopeptide Antibiotics, Drugs and
the Pharmaceutical Sciences, ed. R. Nagarajan, Marcel Dekker,
Inc., New York, 1994, vol. 63, p. 63; V. H. Deshpande and
N. J. Gokhale, Tetrahedron Lett., 1992, 33, 4213; S. B. Singh
and G. R. Pettit, J. Org. Chem., 1990, 55, 2797; G. R. Pettit,
S. B. Singh and M. L. Niven, J. Am. Chem. Soc., 1988, 110, 8539;
M. E. Jung and J. C. Rohloff, J. Org. Chem., 1985, 50, 4909;
D. C. Atkinson, K. E. Godfrey, P. L. Myers, N. C. Philips,
M. R. Stillings and A. P. Welbourn, J. Med. Chem., 1983, 26,
1361.
Bromobenzene
Bromobenzene
9
10
11
12
13
14
15
16
17
18
19
20
Bromobenzene
Bromobenzene
Bromobenzene
4-Chlorophenol
2,4-Dimethylphenol
2,6-Dimethylphenol
4-Methylphenol
4-Methoxyphenol
Phenol
4-Chlorophenol
2,4-Dimethylphenol
2,6-Dimethylphenol
4-Methoxyphenol
4-Chlorophenol
78
48
53
74
80
79
69
70
4-Bromoacetophenone
4-Bromoacetophenone
4-Bromoacetophenone
4-Bromoacetophenone
4-Bromoacetophenone
4-Bromoacetophenone
4-Bromobenzyl alcohol
4-Bromobenzyl alcohol
2
3
F. Ullmann, Ber. Dtsch. Chem. Ges., 1904, 37, 853.
A. A. Moroz and M. S. Shvartsberg, Russ. Chem. Rev., 1974, 43,
679; D. A. Evans and J. A. Ellman, J. Am. Chem. Soc., 1989, 111,
1063; D. L. Boger and D. Yohannes, J. Org. Chem., 1990, 55,
6000; D. L. Boger, M. A. Patane and J. Zhou, J. Am. Chem. Soc.,
1994, 116, 8544W. Carruthers, in Comprehensive Organometallic
Chemistry, ed. G. Wilkinson, Pergamon Press, New York, 1982,
vol. 7, p. 690.
R. K. Gujadhur, C. G. Bates and D. Venkataraman, Org. Lett.,
2001, 3, 4135; P. J. Fagan, E. Hauptman, R. Shapiro and
A. Casalnuovo, J. Am. Chem. Soc., 2000, 122, 5043; M. Wolter,
G. Nordmann, G. E. Job and S. L. Buchwald, Org. Lett., 2002, 4,
973; D. A. Evans, J. L. Katz and T. R. West, Tetrahedron Lett.,
1998, 39, 2937; J. S. Sawyer, E. A. Schmittling, J. A. Palkowitz and
W. J. Smith, J. Org. Chem., 1998, 63, 6338; J. W. Janetka and
D. H. Rich, J. Am. Chem. Soc., 1997, 119, 6488; C. Palomo,
80
56
45
a
Reaction was carried out for 18 h in a sealed vial with 0.8 ml of THF as solvent
with 5 mol % CuCO3 ꢀ Cu(OH)2 H2O, 1.5 equiv K3PO4, 1.2 equiv sodium salt of
the phenoxide and 1 equiv of the aryl bromide.
4
supporting information). Gas chromatographic analysis was
carried out on a Chemito GC 7610 using FID for detection.
The yields obtained from the GC analysis were corrected by
obtaining response factors for the isolated product and the
starting aryl bromides and are averages of 2–4 runs.
M. Oairbide, R. Lopez and E. Gomez-Bengoa, Chem. Commun.,
´ ´
1998, 19, 2091; R. Beugelmans, J. Zhu, N. Husson, M. Bois-
Choussy and G. P. Singh, J. Chem. Soc., Chem. Commun., 1994,
439.
General procedure for the reaction using [Cu(CH3CN)4]ClO4
5
6
J. F. Hartwig, Synlett, 1997, 329; M. Palucki, J. P. Wolfe and S. L.
Buchwald, J. Am. Chem. Soc., 1996, 118, 10 333; M. Palucki, J. P.
Wolfe and S. L. Buchwald, J. Am. Chem. Soc., 1997, 119, 3395;
G. Mann and J. F. Hartwig, J. Org. Chem., 1997, 67, 5413; G.
Mann and J. F. Hartwig, J. Am. Chem. Soc., 1996, 118, 13 109.
Some reviews: J. Lindley, Tetrahedron, 1984, 40, 1433; J. P. Wolfe,
S. Wagaw, J. F. Marcoux and S. L. Buchwald, Acc. Chem. Res.,
1998, 31, 805; J. F. Hartwig, Angew. Chem., Int. Ed., 1998, 37,
2046; J. F. Hartwig, Acc. Chem. Res., 1998, 31, 852; F. Theil,
Angew. Chem., Int. Ed., 1999, 38, 2345; J. S. Sawyer, Tetrahedron,
2000, 56, 5045.
G. Mann and J. F. Hartwig, Tetrahedron Lett., 1997, 38, 8005.
A. Aranyos, D. W. Old, A. Kiyomori, J. P. Wolfe, J. P. Sadighi
and S. L. Buchwald, J. Am. Chem. Soc., 1999, 121, 4369;
G. Mann, C. Incarvito, A. L. Rheingold and J. F. Hartwig, J.
Am. Chem. Soc., 1999, 121, 3224; M. Nishiyama, T. Yamamoto
and Y. Koie, Tetrahedron Lett., 1998, 39, 617; T. Yamamoto, M.
Nishiyama and Y. Koie, Tetrahedron Lett., 1998, 39, 2367; B. C.
Hamann and J. F. Hartwig, J. Am. Chem. Soc., 1998, 120, 7369;
D. W. Old, J. P. Wolfe and S. L. Buchwald, J. Am. Chem. Soc.,
1998, 120, 9722.
Finely powdered K2CO3 (0.2 g, 1.45 mmol), 4-bromobenzoni-
trile (0.182 g, 1 mmol) and [Cu(CH3CN)4]ClO4 (0.033 g,
0.1 mmol), along with a magnetic stir bar, are loaded into a
vial capped with a septum and fitted with a side arm attached
to a double manifold. The aryl oxide is prepared in a two
necked round bottom flask under nitrogen from 4-methylphe-
nol (0.12 ml, 1.2 mmol.) dissolved in about 1.2–1.5 ml of
tetrahydrofuran stirred with sodium hydride (0.056 g, 1.2
mmol) until a clear solution of the sodium aryl oxide is formed.
The aryl oxide is then transferred to the vial through a syringe.
The vial is then purged with nitrogen, cooled with liquid
nitrogen and sealed after evacuating. The sealed vial is then
immersed in an oil bath maintained at 115 1C and the contents
stirred for the required time. At the end of the reaction, the vial
is cooled, broken and the contents filtered through a short
silica column with ethyl acetate. The eluent is collected and
concentrated to 4 ml and analysed by GC.
7
8
9
J. F. Marcoux, S. Doye and S. L. Buchwald, J. Am. Chem. Soc.,
1997, 119, 10 539.
.
General procedure for the reaction using CuCO3 Cu(OH)2 H2O
.
10 A. V. Kalinin, J. F. Bower, P. Riebel and V. Snieckus, J. Org.
Chem., 1999, 64, 2986.
11 E. Buck, Z. J. Song, D. Tschaen, P. G. Dormer, R. P. Volante and
P. J. Reider, Org. Lett., 2002, 4, 1623.
12 H. He and Y. Wu, Tetrahedron Lett., 2003, 44, 3445.
13 D. M. T. Chan, K. L. Monaco, R.-P. Wang and M. P. Winters,
Tetrahedron Lett., 1998, 39, 2933; C. P. Decicco, Y. Song and
D. A. Evans, Org. Lett., 2001, 3, 1029; P. Y. S. Lam, G. Vincent,
C. G. Clark, S. Deudon and P. K. Jadhav, Tetrahedron Lett.,
2001, 42, 3415.
14 J. B. Baruah and A. G. Samuelson, J. Chem. Soc., Chem. Com-
mun., 1987, 1, 36.
15 J. Clayden, N. Greeves, S. Warren, P. Wother, Organic Chemistry,
Oxford University Press, New York, 2001, pp. 294.
16 B. J. Hathaway, D. G. Holah and J. D. Postlethwaite, J. Chem.
Soc., 1961, 3215.
17 Vogel’s Textbook of Practical Organic Chemistry, eds. B. S.
Furniss, A. J. Hannaford, P. W. G. Smith and A. R. Tatchell,
ELBS with Longman, London, 5th edn., 1989, p. 1031.
Finely powdered K3PO4 (0.25 g, 1.2 mmol), 4-bromobenzoni-
trile (0.182 g, 1 mmol) and CuCO3 ꢀ Cu(OH)2 ꢀ H2O (0.012 g,
0.05 mmol) are reacted using a procedure similar to the one
given above except that the solvent used is reduced to 0.8 ml of
tetrahydrofuran. At the end of the reaction, the vial is cooled,
broken and the contents filtered through a short silica column
with ethyl acetate. The eluent is collected and concentrated to
4 ml and analysed by GC. The maximum scale attempted for a
sealed tube reaction was 5 times the amount given in this
reaction.
Acknowledgements
We thank CSIR, New Delhi and Indian Institute of Science
(IISc) for generous financial support. We also thank Sophisti-
N e w J . C h e m . , 2 0 0 4 , 2 8 , 1 3 9 0 – 1 3 9 3
1393