Synthesis and Application of 3,5-Di-tert-butylbenzyl chloroformate for Protecting
_____________________________________________________________________________FULL PAPER
128.1, 128.6, 129.2 (-NH–C= -CH=CH–CH=C–), 134,1
(-NH–C= -), 137.0, 155.1 (-NH–CO–O-).
5 g (10,8 mmol) of 2 in 200 ml of THF. The reaction mixture
was treated under stirring with H2 at 50 °C for 2 h at an initial
pressure of 5 bar. The catalyst was removed by filtration, the
solvent evaporated and the product recrystallized from 100
ml of THF. Yield 3.2 g (91%) with m.p. 69 °C. – IR (KBr):
3,5-Di-tert-butylbenzyl-N,N'-1,5-naphthalene diamine dicar-
boxylate (14b)
1
ν/cm–1 = 3370 (m), 1736 (s). – H NMR (250 MHz, d6-
3 g (19 mmol) of 12, dissolved in 300 ml of CH2Cl2, 13.6 g
(48 mmol) of 11b and 90 ml of a 1M Na2CO3 solution were
reacted as described for compound 14a. Yield 10.3 g (84%)
with m.p. 203 °C. – IR (KBr): ν/cm–1 = 3282 (m), 1697 (s). –
1H NMR (250 MHz, d6-DMSO): δ/ppm = 1.26 (s, 36H,
(CH3)3C-), 5.15 (s, 4 H, -O–CH2-), 7.24 (d, 4H, (CH3)3C–C=
-CH=C– -CH2-), 7.34 (s, 2H, (CH3)3C– C= –CH=C–
-C(CH3)3), 7.45 (t, 2H, -NH– C= –CH=CH-), 7.56 (d, 2H),
7.88 (d, 2H), 9.64 (s, 2H, -NH–CO-). – 13C NMR (62.9 MHz,
d6-DMSO): δ/ppm = 31.4 ((CH3)3C-), 34.6 ((CH3)3C-), 66.7
(-CH2-), 120.3, 121.5, 121.9, 122.0, 125.4, 134.2, 136.2 (-O–
CH2– C= -), 150.7 (-C= -C(CH3)3), 155,1 (-NH–CO–O-).
DMSO): δ/ppm = 1.13 (s, 9H, -C(CH3)3), 1.60 (m, 4H, -O–
CH2–CH2-), 3.32 (t, 2H, -CH2–O–C(CH3)3), 4.10 (t, 2H, -
NH–CO–O–CH2-), 5.61 (s, 2H, -NH2), 6.70 (d, 1H), 7.16–
7.28 (m, 2H), 7.33 (d, 1H), 7.49 (d, 1H), 7.88 (d, 1H), 9.12 (s,
1H, -NH–CO–O–CH2-). – 13C NMR (62,9 MHz, d6-DMSO):
δ/ppm = 25.9 (-O–CH2–CH2–CH2-), 26.7 (-O–CH2–CH2-),
27.5 (-C(CH3)3), 60.5 (-CH2–O–C(CH3)3), 64.3 (-O–CH2–
CH2-), 72.0 (-C(CH3)3), 107.9, 110.4, 119.5, 121.3, 123.1,
123.5, 126.6, 129.5, 133.7, 144.9 (C= -NH2), 155.1 (-NH–
CO–O–CH2-).
Benzyl 4-chloroformyloxybutyl-N,N'-1,5-naphthalene di-
amine dicarboxylate (5)
The synthesis and experimental data of the other presented
compounds 8–11b, 13a,b and 15–22 have been described
elsewhere [6, 7].
0,2 g (0,5 mmol) of 3, dissolved in 700 ml of dioxane was
slowly added dropwise into 0,5 ml (6,8 mmol) of phosgene
under ice cooling and stirred for 2 h at room temperature.
The excess phosgene was removed by heating up to 50 °C in
a water bath, and the remaining product was dried. Cleaning
of the chloroformate by distillation was not possible, as benzyl
chloroformates could explosively decompose during heating.
References
[1] E. C. Prolingheuer, J. J. Lindsey, H. Kleimann, J. Elasto-
mers Plast. 1989, 21, 100
[2] H.-J. Kogelnik, H. H. Huang, M. Barnes, R. Meichsner, J.
Elastomers Plast. 1991, 23, 314
[3] E. C. Prolingheuer, J. M. Barnes, R. Kopp, E. Seggern, Rub-
ber Plast. News 1992, 21, 15
[4] E. C. Prolingheuer, J. M. Barnes, R. Kopp, E. Seggern, J.
Elastomers Plast. 1992, 24, 221
[5] G. Festel, C. D. Eisenbach, Polym. Prepr. (Am. Chem. Soc.,
Div. Polym. Chem.) 1996, 37/1, 535
[6] G. Festel, K. Fischer, C. D. Eisenbach, Macromol. Chem.
Phys. 1997, 198, 3105
[7] G. Festel, C. D. Eisenbach, Macromol. Chem. Phys. 1998,
199, 1365
[8] S. L. Kwolek, P. W. Morgan, J. Polym. Sci. A 1964, 2, 2693
[9] L. L. Harrell, Macromolecules 1969, 2, 607
[10] M. Bergmann, L. Zervas, Ber. Dtsch. Chem. Ges. 1932, 65,
1192
[11] T. W. Greene, P. G. M. Wuts, Protective Groups in Organic
Synthesis, John Wiley, New York 1991, p. 335
[12] C. D. Eisenbach, H. Nefzger, in: Handbook of Polymer Syn-
thesis, Part A, ed. by H. R. Kricheldorf, Marcel Dekker, New
York 1991, p. 685
[13] C. D. Eisenbach, M. Baumgartner, C. Günter, in: Advances
in Elastomers and Rubber Elasticity, ed. by J. Lal and J. E.
Mark, Plenum, New York 1986, p. 51
Yield 0.2 g (84%) with m.p. 156 °C. – IR (KBr): ν/cm–1
=
3296 (m), 1780 (s), 1699 (s). – 1H NMR (250 MHz, CDCl3):
δ/ppm = 1.80 (m, 4H, -O–CH2–CH2-), 4.23 (t, 2H, -O–CH2–
CH2-), 4.31 (t, 2H, -CH2–O–C(CH3)3), 5.24 (s, 2H, -O–CH2–
C=), 7.36–7.53 (m, 7H), 7.61 (t, 2H), 7.90 (d, 2H), 9.48 (s,
1H, -NH–CO–O–CH2–CH2-), 9.65 (s, 1H, -NH–CO–O–CH2–
C=). – 13C NMR (62,9 MHz, CDCl3): δ/ppm = 25.1 (-CH2–
CH2–O–CO–Cl), 30.3 (-NH–CO–O–CH2–CH2-), 64.6 (-NH–
CO–O–CH2-), 68.1 (-O–CH2–C=), 71,5 (-CH2–O–CO–Cl),
120.1, 120.3, 121.9, 125.7, 128.2, 128.7, 129.2, 134.1, 134.3,
137.1, 155.1 (-NH–CO–O–CH2-C=), 155,4 (-NH–CO–O–
CH2–CH2-).
Benzyl-N,N'-1,5-naphthalene diamine dicarboxylate (14a)
After dissolving 3 g (19 mmol) of 12 in 300 ml of CH2Cl2, a
solution of 8,2 g (48 mmol) of 11a in CH2Cl2 and 50 ml of
1M Na2CO3 solution were added dropwise at 0 °C. After
warming up to room temperature, the mixture was stirred for
8 h. The CH2Cl2 phase was separated from the water phase
and dried with Na2SO4. The CH2Cl2 was evaporated, and the
crude product dried. For the purification by flash chroma-
tography 2 g were solved in 100 ml of toluene/THF 10:1,
given on the column and flashed with toluene/THF 10:1. After
500 ml, 100 ml fractions were taken. The composition of the
fractions was controlled by thin-layer chromatography. After
evaporating the solvent, the product was recrystallized from
150 ml of THF. Yield: 7 g (86%) with m.p. 250 °C. – IR
[14] C. Steinlein, L. Hernandez, C. D. Eisenbach, Macromol.
Chem. Phys., 1996, 197, 3365
[15] C. D. Eisenbach, H. Nefzger, in: Contemporary Topics in
Polymer Science, ed. by W. M. Culbertson, Plenum, New
York 1990, 6, Multiphase Macromolecular Systems, p. 339
[16] W. Voelter, J. Müller, W. Heinzel, C. T. Beni, in: Peptides:
Structure and Function, Proceedings of the 8th American
Peptide Symposium, ed. by V. J. Hruby and D. H. Rich, Pier-
ce, Rockford 1983, p. 131
[17] W. Voelter, J. Müller, C. T. Beni, W. Heinzel, H. Kalbacher,
A. Morel, H. Wollmann, in: Peptides: Proceedings of the 17th
European Peptide Symposium, ed. by K. Blaha and P. Ma-
lon, de Gruyter, Berlin 1983, p. 125
1
(KBr): ν/cm–1 = 3268 (m), 1690 (s). – H NMR (250 MHz,
d6-DMSO): δ/ppm = 5.18 (s, 4H, -O–CH2-), 7.29–7.52 (m,
10H), 7.50 (d, 2H), 7.60 (d, 2H), 7.88 (s, 2H, -NH–CO-),
9.66 (s, 2H, -NH–CO-). – 13C NMR (62,9 MHz, d6-DMSO):
δ/ppm = 66.2 (-CH2-), 120.2 (-NH–C= -CH=CH-), 121.8
(-NH–C= -CH=), 125,6 (-NH–C=-CH= -CH–CH=), 128.0,
[18] J. Müller, W. Voelter, in: Biologically Active Principles of
J. Prakt. Chem. 1999, 341, No. 1
35