7
selected d-sphingosine (trans-d-erythro-2-amino-4-octade-
cene-1,3-diol) as a potential candidate for the synthesis of
functional sphingoglycolipid derivatives, since the amino group
of d-sphingosine is convenient for further modification. We
were pleased to find that CGase transferred the GM3 oligo-
saccharide [Neu5Aca(2?3)Galb(1?4)Glc], to the primary
hydroxy group of d-sphingosine from the polymer 10 and
intermediate 11 was directly dansylated to afford a fluorescent-
labelled lysoGM3 2† in 50% yield (12 mg) from compound
10.
In conclusion, we have demonstrated the versatility of water-
soluble polymer supports in the enzymatic synthesis of non-
natural and biologically important glycolipid derivatives. It
should be noted that this synthetic strategy should greatly
accelerate efficient combinatorial synthesis of libraries of
glycolipids varying both in the carbohydrate and in the lipid
portions.
i
O
OR1
O
OH
O
O
OH
O
H2N
HO
O
R2O
O
N
H
n
O
OH
OH
HN
N
H
8 R1 = H , R2 = H
m
ii
HO
OH
m : n = 1 : 5
CO2H
9
R1
=
, R2
= H
HO
O
AcHN
HO
iii
HO
HO
OH
CO2H
10 R1 = H , R2
=
O
AcHN
HO
This work was partly supported by a Grant-in-Aid for
Scientific Research from the Ministry of Education, Science
and Culture, Japan (09240101) and by a grant from the Original
Industrial Technology R&D Promotion Program of the New
Energy and Industrial Technology Development Organisation
(NEDO).
Scheme 2 Reagents and conditions: i, acrylamide monomer (5.0 equiv.),
TMEDA (2.4 equiv.), ammonium persulfate (APS) (0.96 equiv.), DMSO,
H2O, 50 °C, 24 h, 92.0% from 7; ii, CMP-Neu5Ac (1.2 equiv. for lactose),
bovine serum albumin (BSA), calf intestinal alkaline phosphatase (CIAP)
(20 units), 50 mm sodium cacodylate buffer (pH 7.40), MnCl2, NaN3, a-2,6
sialyltransferase (0.1 units, 2.7 munits per 1.0 mmol acceptor), 37 °C, 48 h,
100%; iii, CMP-Neu5Ac (1.2 equiv. for lactose), BSA, CIAP (20 units), 50
mm sodium cacodylate buffer (pH 7.40), MnCl2, Triton CF-54, a-2,3
sialyltransferase (0.3 units, 8.0 munits per 1.0 mmol acceptor), 37 °C, 72 h,
100%.
Notes and references
† Selected data for 4: dH(400 MHz, CDCl3) 7.80–7.09 (m, 10 H, 2 3 Ph),
6.92 (br s, 1 H, NH), 4.31–3.81 (m, 2 H, b-H), 4.01 (br s, 1 H, a-H),
1.32–1.24 (m, 12 H, 6 3 CH2) and 0.89 (t, 3 H, J 6.7, CH3). For 6: dH(400
MHz, CDCl3) 7.60–7.03 (m, 10 H, 2 3 Ph), 5.25 (d, 1 H, J 3.4, H-4A), 5.05
(dd, 1 H, J 8.4 and 9.0, H-3), 4.84 (dd, 1 H, J 3.5 and 9.2, H-2A), 4.81 (dd,
1 H, J 3.4 and 9.0, H-3A), 4.79 (dd, 1 H, J 7.6 and 9.0, H-2), 4.38 (d, 1 H,
J 7.6, H-1), 4.32 (d, 1 H, J 7.8, H-1A), 4.29 (dd, 1 H, J 1.7 and 12.1, H-6a),
4.18 (br d, 1 H, J 6.5, a-H), 3.43 (dt, 1 H, J 1.7 and 5.2, H-5), 2.27 (s, 2 H,
NHCH2), 2.06–1.85 (each s, 21 H, OAc), 1.46–1.18 (m, 12 H, 6 3 CH2) and
0.79 (t, 3 H, J 6.7, CH3). For 1: dH(400 MHz, CDCl3) 5.71 (dt, 1 H, J 6.7
and 14.7, Cer-5), 5.46 (dd, 1 H, J 7.6 and 14.7, Cer-4), 4.24 (d, 1 H, J 7.0,
H-1A), 4.23 (d, 1 H, J 7.8, H-1), 2.78 (dd, 1 H, J 4.2 and 12.0, H-3Beq), 2.01
(s, 3 H, NAc) and 0.81 (t, 6 H, J 6.7, 2 3 CH3). For 2: dH(400 MHz, CDCl3)
8.58–7.04 (m, 6 H, dansyl), 4.35 (d, 1 H, J 7.0, H-1A), 4.20 (d, 1 H, J 7.4, H-
1), 2.73 (br d, 1 H, J 4.3, H-3Beq), 1.90 (s, 3 H, NAc) and 0.88 (t, 3 H, CH3);
lex/nm 397.5; lem/nm 460.5.
i
9
1 (Pseudo GM3)
10
ii
HO
OH
HO
OH
OH
OH
CO2H
OH
HO
O
HO
O
O
( )12
O
O
AcHN
O
OH
NH2
OH
11
iii
‡ In the previous report (ref. 6), the coupling reaction of 3 with 5 gave a
glycoside intermediate in 48% yield.
2 (Dansyl-GM3)
λex = 397.5 nm
λem = 460.5 nm
1 Y. C. Lee and R. T. Lee, Acc. Chem. Res., 1995, 28, 321.
2 O. Seiz and C.-H. Wong, J. Am. Chem. Soc., 1997, 119, 8766.
3 C. H. Tran, P. Critchley, D. H. G. Crout, C. J. Britten, S. J. Witham and
M. I. Bird, J. Chem. Soc., Perkin Trans. 1, 1998, 2295.
4 S.-I. Nishimura, K. Matsuoka and Y. C. Lee, Tetrahedron Lett., 1994, 35,
5657.
5 K. Yamada and S.-I. Nishimura, Tetrahedron Lett., 1995, 52, 9493.
6 S.-I. Nishimura and K. Yamada, J. Am. Chem. Soc., 1997, 119, 10555.
7 K. Yamada, E. Fujita and S.-I. Nishimura, Carbohydr. Res., 1997, 305,
443.
Scheme 3 Reagents and conditions : i, C16 ceramide (5.0 equiv.), 50 mm
sodium citrate buffer (pH 6.0), Triton CF-54, ceramide glycanase from
leech (0.005 units), 37 °C, 17 h, 60% from 9; ii, d-sphingosine (5.0 equiv.),
50 mm sodium citrate buffer (pH 6.0), Triton CF-54, ceramide glycanase
from leech (0.005 units), 37 °C, 17 h; iii, dansyl chloride (5.0 equiv.), Et3N
(5.0 equiv.), CHCl3, 25 °C, 2 h, 50% from 10.
specificity of transglycosylation with regard to the carbohydrate
structure of glycolipids.
Next, our interest focused on the substrate specificity of the
transglycosylation reaction carried out by CGase against
glycosyl acceptor substrates,9 as it will significantly influence
the versatility of the present technology in the combinatorial
synthesis of ‘libraries of glycolipids and their mimetics’. We
8 R. Polt, L. Szabo, J. Treiberg, Y. Li and V. Hruby, J. Am. Chem. Soc.,
1992, 114, 10249.
9 Y.-T. Li, B. Z. Carter, B. N. N. Rao, H. Schweingruber and S.-C. Li.,
J. Biol. Chem., 1991, 266, 10723.
Communication 8/09729A
508
Chem. Commun., 1999, 507–508