Please do not adjust margins
Dalton Transactions
Page 4 of 6
DOI: 10.1039/C7DT04045H
COMMUNICATION
Journal Name
‡ X-ray crystallographic data in CIF format for 2-4 have been
deposited with the Cambridge Crystallographic Data Centre,
CCDC 1564905-1564907.
expected, the smallest distances obtained through DFT are in
complexes 3 and 5 which is consistent with the solid-state results.
This hints that the XRD finding should pertain in other environment
than the crystals.
1
2
A.J. Nozik, J. Miller, Chem. Rev., 2010, 110, 644.
a) B. O’Regan, M. Graetzel, Nature, 1991, 353, 737; b) M.
Graetzel, Nature, 2001, 414, 338.
The anagostic interactions evidenced in the present work protect
the copper site and improve the stability of the structure by further
minimizing the change of geometry between Cu (I) and Cu (II). This
protection is of crucial importance for the design of efficient redox
couples for DSSCs. Therefore our complexes, whose potential can
be easily tuned by adequate substituents on the phenanthrolines,
have a great potential as redox couple of an electron transfer
mediator electrolyte in DSSC applications, along with a proper dye
with adequate HOMO and LUMO levels, where the HOMO level lies
under the potential of the redox couple. In this framework, we
underline that the most popular redox couple, I–/I3–, has several
limitations (see Introduction), and, in particular it presents a too
3
A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Chem.
Rev., 2010, 110, 6595.
H.J. Snaith, Adv. Funct. Mater., 2010, 20, 13.
C. Dragonetti, A. Colombo, M. Magni, P. Mussini, F. Nisic, D.
Roberto, R. Ugo, A. Valore, A. Valsecchi, P. Salvatori, M.G.
Lobello, F. De Angelis, Inorg. Chem. 2013, 52, 10723.
A. Yella, H.-W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K.
Nazeeruddin, E.W.-G.Diau, C.-Y. Yeh, S.M. Zakeeruddin, M.
Graetzel, Science, 2011, 334, 629.
4
5
6
7
8
9
S. Yanagida, Y. Yu, K. Manseki, Acc. Chem. Res., 2009, 42,
1827.
M. Magni, P. Biagini, A. Colombo, C. Dragonetti, D. Roberto,
A. Valore, Coord. Chem. Rev., 2016, 322, 69.
S. Hattori, Y. Wada, S. Yanagida, S. Fukuzumi, J. Am. Chem.
Soc., 2005, 127, 9648.
negative redox potential (–0.28
V
vs Fc+|Fc in acetonitrile,
converted from 0.35 V vs NHE)29 that precludes its use in DSSCs
relying on some of the most promising dyes that have a relatively
high potential. Copper complexes, and specifically complex 3, are
expected to be adequate redox mediators (along with the related 10 M. Magni, A. Colombo, C. Dragonetti, P. Mussini,
Electrochim. Acta, 2014, 141, 324.
Cu(II) complex) for DSSCs upon combination with organic dyes such
as C218 30a , LEG4 30b or Y123.30c
11 a) A. Colombo, C. Dragonetti, M. Magni, D. Roberto, F.
Demartin, S. Caramori, C.A. Bignozzi, ACS Appl. Mater.
Interfaces, 2014, 6, 13945; b) M. Magni, R. Giannuzzi, A.
It is known that copper complexes, which versatile coordination
chemistry has significant influence over their optical and redox
properties,26 are of great interest as catalysts because the use of
complexes deriving from earth-abundant elements is desirable from
the standpoint of scalability and sustainability. Besides, agostic31 or
anagostic32 interactions are often used to activate inert C-H bonds,
facilitating new reactions. For example, recently the catalytic
activity of bis(pyrazolyl)borate copper complexes toward
carbenoide insertion into N-H bonds was reported.31 In this system
weak intramolecular C-H∙∙∙Cu interactions are of great importance
and act as a switch which is turned “on” if interacting with the
substrate and “off” if eliminating the product and regenerating the
weak interaction.31 Moreover the steric hindrance of groups in the
positions 2,9 of 1,10-phenanthroline copper (I) complexes plays an
important role in the regioselective addition of CBr4 to styrene,
substituted phenyl rings leading to a better catalytic activity then
methyl groups.33 The complexes investigated in the present work
are therefore of potential interest for such catalysis studies.
Colombo, M.P. Cipolla, C. Dragonetti, S. Caramori, S. Carli,
R. Grisorio, G.P. Suranna, C.A. Bignozzi, D. Roberto, M.
Manca, Inorg. Chem. 2016, 55, 5245.
12 a) M.T. Miller, P. K. Gantzel, T.B. Karpishin, Inorg. Chem.
1999, 38, 3414; b) Md. Athar Masood and Panthappally S.
Zacharias, J. Chem. Soc., Dalton Trans., 1991, 1, 111; c) V.
Hebbe-Viton, V. Desvergnes, J.J. Jodry, C. Dietrich-Buchecker,
J.-P. Sauvage, J. Lacour, Dalton Trans., 2006, 2058; d) N.A.
Gothard, M.W. Mara, J. Huang, J. M. Szarko, B. Rolczynski, J.
V. Lockard, L.X. Chen. J. Phys. Chem. A, 2012, 116, 1984.
13 C.O. Dietrich-Buchecker, P.A. Marnot, J.P. Sauvage,
Tetrahedron Lett., 1982, 23, 5291.
14 S. Jakobsen, M. Tilset, Tetrahedron Lett., 2011, 52, 3072.
15 G.J. Kubas, B. Monzik, L. Crumbliss, Inorg. Chem., 1979, 90.
16 J. T. Hupp, M. J. Weaver, Inorg. Chem., 1983, 22, 2551.
17 A. J. Bard, L. R. Faulkner, Electrochemical Methods.
Fundamentals and Applications, 2nd Ed, John Wiley & Sons,
Inc.
18 L. Kohler, D. Hayes, J. Hong, T.J. Carter, M.L. Shelby, K.A.
,
Fransted, L.X. Chena, K.L. Mulfort, Dalton Trans., 2016, 45
9871.
In summary we have fully characterized variously substituted 1,10-
phenanthroline copper(I) complexes. Their crystal structure,
determined by single-crystal X-ray analysis, confirms a distorted
tetrahedral geometry and reveals interesting anagostic interactions
for complexes 3 and 5. Clearly the investigated copper complexes
are excellent candidates as electron transfer mediators for DSSCs
and are appealing for catalysis studies.
19 F. Xu, T. Tao, K. Zhang, X.-X. Wang, W. Huang, X.-Z.
You, Dalton Trans., 2013, 42, 3631.
20 T.S. Thakur, G.R. Desiraju, Chem. Commun., 2006, 552.
21 W. Scherer, G.S. McGrady, Angew. Chem. Int. Ed. 2004, 43
1782.
,
22 a) S. Trofimenko, J. Am. Chem. Soc., 1968, 90, 4754. b) S.
Trofimenko, Inorg. Chem., 1970, , 2493.
9
C.D., A.C. and D.R deeply thank the bilateral project Italy-India
“Cromofori a forma di Y coniugati al ferrocene come potenziali
sensibilizzatori in celle DSSC in combinazione con innovativi
mediatori redox” (Prot. nr. MAE0104617), “Con il contributo del
Ministero degli Affari Esteri e della Cooperazione Internazionale,
Direzione Generale per la Promozione del Sistema Paese”. This work
used computational resources from the CCIPL (Centre de Calcul
Intensif des Pays de la Loire) installed in Nantes.
23 M. Brookhart, M.L.H. Green, J. Organomet. Chem. 1983,
250, 395.
24 a) W.I. Sundquist, D.P. Bancroft, S.J. Lippard, J. Am. Chem.
Soc. 1990, 112, 1590; b) W. Scherer, G.S. McGrady, Angew.
Chem. Int. Ed. 2004, 43, 1782.
25 W. Scherer, A.C. Dunbar, J.E. Barquera-Lozada, D. Schmitz, G.
Eickerling, D. Kratzert, D. Stalke, A. Lanza, P. Macchi, N.P.M.
Casati, J. Eban-Allah, C. Kuntscher, Angew. Chem. Int. Ed.,
2015, 54, 2505.
26 a) M.-M. Huang, Y.-M. Guo, Y. Shi, L. Zhao, Y.-W. Niu, Y. Shi,
X.-L. Li, Inorg. Chim. Acta, 2017, 457, 107; b) R.A. Begum,
V.W. Day, M. Kumar, J. Gonzales, T. A. Jackson, K. Bowman-
James, Inorg. Chim. Acta, 2014, 417, 287
Notes and references
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins