2474
K. YAMADA et al.
Table 1. Removal of p-Alkylphenols by the Combined Use of Tyrosinase and Chitosan Beads at 45 ꢀC
Phenol Tyrosinase
concentration concentration
Chitosan
beads
(cm3/cm3)
Reaction
time
(min)
Phenol
compound
H2O2
(mM)
pH % Conversion % Adsorption % Removal
(mM)
(U/cm3)
4-n-pentylphenol
4-n-hexylphenol
4-n-heptylphenol
4-n-octylphenol
4-n-nonylphenol
4-isopropylphenol
0.5
0.3
0.1
0.05
0.05
0.5
0.5
0.5
0.5
0.5
0.5
50
50
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.025
0.100
0.025
0.100
40
40
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
6.0
6.0
100
100
100
100
100
100
100
100
100
50
50
40
98.7
100
97.2
98.7
100
97.2
120
180
120
120
120
180
120
180
50
50
99.9
86.7
93.3
87.5
98.2
40.7
77.2
86.6
93.2
83.9
98.2
17.5
71.3
50
50
99.9
95.9
4-sec-butylphenol
4-tert-pentylphenol
100
50
100
0.5
0.5
43.0
92.3
150
estrogenic activities of bisphenol A and nonylphenol
by oxidative enzymes from lignin-degrading basidiomy-
cetes. Chemosphere, 42, 271–276 (2001).
References
1) Guillette, L. J., and Gunderson, M. P., Alteration in
development of reproductive and endocrine systems of
wildlife populations exposed to endocrine-disrupting
contaminants. Reproduction, 122, 857–864 (2001).
2) Gunderson, M. P., LeBlanc, G. A., and Guillette, L. J.,
Alterations in sexually dimorphic biotransformation of
testosterone in juvenile American alligators (Alligator
mississippiensis) from contaminated lakes. Environ.
Health Perspect., 109, 1257–1264 (2001).
3) Gimeno, S., Komen, H., Gerritsen, A. G. M., and
Bowmer, T., Feminisation of young males of the
common carp, Cyprinus Carpio, exposed to 4-tert-
pentylphenol during sexual differentiation. Aquatic
Toxicology, 43, 77–92 (1998).
11) Sun, W, Q., Payne, F. G., Moas, M., Chu, J. H., and
Wallace, K. K., Tyrosinase reaction/chitosan adsorption
for removing phenols from wastewater. Biotechnol.
Prog., 8, 179–186 (1992).
12) Yamada, K., Akiba, Y., Shibuya, T., Kashiwada, A.,
Matsuda, K., and Hirata, M., Water purification through
bioconversion of phenol compounds by tyrosinase and
chemical adsorption by chitosan beads. Biotechnol.
Prog., 21, 823–829 (2005).
13) Wada, S., Ichikawa, H., and Tatsumi, K., Removal of
phenols and aromatic amines from wastewater by a
combination treatment with tyrosinase and a coagulant.
Biotechnol. Bioeng., 45, 304–309 (1995).
4) Hayes, T. B., Collins, A., Lee, M., Mendoza, M.,
Noriega, N., Stuart, A. A., and Vonk, A., Hermaphro-
ditic, demasculinized frogs after exposure to the herbi-
cide atrazine at low ecologically relevant doses. Proc.
Natl. Acad. Sci. USA, 99, 5476–5480 (2002).
5) Ying, G. G., Williams, B., and Kookana, R., Environ-
mental fate of alkylphenols and alkylphenol ethoxylates:
a review. Environ. Int., 28, 215–226 (2002).
14) Payne, G. F., Sun, W. Q., and Sohrabi, A., Tyrosinase
reaction/chitosan adsorption for selectively removing
phenols from aqueous mixtures. Biotechnol. Bioeng., 40,
1011–1018 (1992).
15) Ikehata, K., and Nicell, J. A., Characterization of
tyrosinase for the treatment of aqueous phenols. Bio-
resource Technol., 74, 191–199 (2000).
16) Fukuda, T., Uchida, H., Takashima, Y., Uwajima, T.,
Kawabata, T., and Suzuki, M., Degradation of bisphenol
A by purified laccase from trametes villosa. Biochem.
Biophy. Res. Commun., 284, 704–706 (2001).
6) Blackburn, M. A., and Waldock, M. J., Concentrations
of alkylphenols in rivers and estuaries in England and
Wales. Water Res., 29, 1623–1629 (1995).
7) Kwack, S. J., Kwon, O., Kim, H. S., Kim, S. S., Kim, S.
H., Sohn, K. H., Lee, R. D., Park, C. H., Jeung, E. B.,
An, B. S., and Park, K. L., Comparative evaluation of
alkylphenolic compounds on estrogenic activity in vitro
and in vivo. J. Toxicol. Environ. Health A, 65, 419–431
(2002).
8) Chikae, M., Ikeda, R., Hasan, Q., Morita, Y., and
Tamiya, E., Effect of alkylphenols on adult male
medaka: plasma vitellogenin goes to the level of estrous
female. Environ. Toxicol. Pharmacol., 15, 33–36 (2003).
9) Rankouhi, T. R., Sanderson, J. T., van Holsteijn, I., van
Leeuwen, C., Vethaak, A. D., and van den Berg, M.,
Effects of natural and synthetic estrogens and various
environmental contaminants on vitellogenesis in fish
primary hepatocytes: comparison of bream (Abramis
brama) and carp (Cyprinus carpio). Toxicol. Sci., 81,
90–102 (2004).
17) Okazaki, S., Michizoe, J., Goto, M., Furusaki, S.,
Wariishi, H., and Tanaka, H., Oxidation of bisphenol
A catalyzed by laccase hosted in reversed micelles in
organic media. Enzyme Microb. Technol., 31, 227–232
(2002).
18) Michizoe, J., Ichinose, H., Kamiya, N., Maruyama, T.,
and Goto, M., Biodegradation of phenolic environmental
pollutants by a surfactant-laccase complex in organic
media. J. Biosci. Bioeng., 99, 642–647 (2005).
19) Nicell, J. A., Bewtra, J. K., Taylor, K. E., Biswas, N.,
and St. Pierre, C., Enzyme catalyzed polymerization and
precipitation of aromatic compounds from wastewater.
Water Sci. Technol., 25, 157–164 (1992).
20) Reactor development for redoxidase catalyzed polymer-
ization and precipitation of phenols from wastewater.
Water Res., 27, 1629–1639 (1993).
21) Caza, N., Bewtra, J. K., Biswas, N., and Taylor, K. E.,
Removal of phenolic compounds from synthetic waste-
10) Tsutsumi, Y., Haneda, T., and Nishida, T., Removal of