Journal of the American Chemical Society
Page 4 of 5
2017, 139, 13076-13082. (j) Zhu, N.; Wang, T.; Ge, L.; Li, Y.; Zhang, X.; Bao,
substrates. In the case of 2am, the system is conformationally locked,
and opening of the purported oxoncarbenium would deliver only the
trans product (eq. 3). For the carboamination of b-methylstyrene, the
system may rotate freely, and the thermodynamically more stable trans
oxocarbenium structure may form. Stereoinvertive opening of the
oxocarbenium followed by lactamization delivers selectively the cis
product 2ao (eq. 4). Taken together, these mechanistic probes indicate
that oxocarbenium ion intermediates form when geometrically permit-
ted, though are not required for product formation if the radical addi-
tion intermediate is oxidizable by Cu(II), as is the case for the benzylic
radical preceding the formation of 2al (eq. 1).8, 16
H. Org. Lett. 2017, 19, 4718-4721. (k) Liu, Z.; Wang, Y.; Wang, Z.; Zeng, T.;
Liu, P.; Engle, K. M. J. Am. Chem. Soc. 2017, 139, 11261-11270. (l) Choi, G. J.;
Knowles, R.R. J. Am. Chem. Soc. 2015, 137, 9226−9229. (m) Wang, D.; Wu, L.;
Wang, F.; Wan, X.; Chen, P.; Lin, Z.; Liu, G. J. Am. Chem. Soc. 2017, 139, 6811-
6814. (n) Um, C.; Chemler, S. R. Org. Lett. 2016, 18, 2515-2518.
1
2
3
4
5
6
7
8
3 For general books and reviews see: (a) Renaud, P., Sibi, M. P., Eds. Radicals
in Organic Synthesis; Wiley-VCH: New York, 2001. (b) Giese, B. Radicals in
Organic Synthesis: Formation of Carbon–Carbon Bonds; Pergamon: Oxford,
1986. (c) Hart, D. J. Science 1984, 223, 883-887. (d) Sibi, M. P.; Manyem, S.;
Zimmerman, J. Chem. Rev. 2003, 103, 3263-3295. (e) Zimmermann, J.; Sibi,
M. P. Top. Curr. Chem. 2006, 263, 107-162. (f) Hoffman, R. W. Chem. Soc.
Rev. 2016, 45, 577-583. (g) Matyjaczewski, K.; Xia, J. Chem. Rev. 2001, 101,
2921-2990. (h) Tang, S.; Liu, K.; Liu, C.; Lei, A. Chem. Soc. Rev. 2015, 44,
1070-1082. For redox catalysis involving radicals see: (i) Studer, A.; Curran, D.
P. Angew. Chem. Int. Ed. 2016, 55, 58-102. (j) Romero, N. A.; Nicewicz, D. A.
Chem. Rev. 2016, 116, 10075-10166. (k) Prier, C. K.; Rankic, D. A.; MacMillan,
D. W. C. Chem. Rev. 2013, 113, 5322-5363. (l) Shaw, M. H.; Twilton, J.; Mac-
Millan, D. W. C. J. Org. Chem. 2016, 81, 6898-6926. (m) Skubi, K. L.; Blum, T.
R.; Yoon, T. P. Chem. Rev. 2016, 116, 10035-10074. (n) Narayanam, J. M. R.;
Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40, 102-113. (o) Tucker, J. W.;
Stephenson, C. R. J. J. Org. Chem. 2012, 77, 1617-1622. (p) Douglas, J. J.;
Sevrin, M. J.; Stephenson, C. R. J. Org. Process Res. Dev. 2016, 20, 1134-1147.
For powerful approaches to alkene functionalization via radical additions see:
(q) Margrey, K. A.; Nicewicz, D. A. Acc. Chem. Res. 2016, 49, 1997-2006. (r)
Gentry, E. C.; Knowles, R. R. Acc. Chem. Res. 2016, 49, 1546-1556. For carbo-
amination reactions involving aryl radicals from aryl diazonium precursors see:
(s) Kindt, S.; Wicht, K.; Heinrich, M. R. Org. Lett. 2015, 17, 6122-6125. (t)
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
EtO
standard
conditions
O
nBu
+
NH2
Br
O
+
H
EtO
1
H
nBu
nBu
O
O
(4)
N
N
+
2ao
48%, 25:1 cis:trans from (Z)
56%, 32:1 cis:trans from (E)
In conclusion, we have developed a three-component carboamina-
tion reaction that couples readily available alkenes, functionalized alkyl
halides, and amines. Yields are good to excellent, and the scope of the
reaction in all three components is broad. Olefin classes that are tradi-
tionally challenging to functionalize through transition metal catalysis
are exceptionally reactive in this system, which we attribute to the in-
termediacy of an oxocarbenium species. The molecules constructed
through this method represent powerful examples of the potential of
base metal catalysis to enable the rapid difunctionalization of olefins.
Future work will focus on developing diastereoselective conditions for
differentially substituted electrophiles, expanding nucleophile scope,
and developing an asymmetric protocol.
Blank, O.; Wetzel, A.; Ullrich, D.; Heinrich, M. R. Eur. J. Org. Chem. 2008
,
3179-3189. (u) Citterio, A.; Minisci, F.; Albinati, A.; Bruokner, S. Tetrahedron
Lett. 1980, 21, 2909-2910. (v) Hari, D. P.; Hering, T.; König, B. Angew. Chem.
Int. Ed. 2014, 53, 725-728. (w) Fehler, S. K.; Heinrich, M. R. Synlett 2015, 26,
580-603.
4(a) Chen, X.; Liu, X.; Mohr J. T. J. Am. Chem. Soc. 2016, 138, 6364−6367.
(b) Xu, T.; Hu, X. Angew. Chem. Int. Ed. 2015, 54, 1307-1311. (c) Fisher, D. J.;
Burnett, G. L.; Velasco, R.; Alaniz, J. R. J. Am. Chem. Soc. 2015, 137, 11614-
11617. (d) Gietter, A. A. S.; Gildner, P. G.; Cinderella, A. P.; Watson, D. A. Org.
Lett. 2014, 16, 3166-3169.
ASSOCIATED CONTENT
Supporting Information
5 (a) Nishikata, T.; Noda, Y.; Fujimoto, R.; Sakashita, T. J. Am. Chem. Soc.
2013, 135, 16372–16375. (b) Tang, S.; Liu, K.; Liu, C.; Lei, A. Chem. Soc. Rev.
2015, 44, 1070-1082.
Experimental procedures and spectra. This material is available free of
6 (a) Matyjaczewski, K. Macromolecules 2012, 45, 4015−4039. (b) Soejima,
T.; Satoh, K.; Kamigaito, M. J. Am. Chem. Soc. 2016, 138, 944-954.
7
AUTHOR INFORMATION
(a) Fischer, H.; Radom, L. Angew. Chem. Int. Ed. 2001, 40, 1340–1371.
(b) Giese, B.; He, J.; Mehl, W. Chem. Ber. 1988, 121, 2063-2066.
8
Corresponding Author
Kochi, J. K.; Bemis, A.; Jenkins, C. L. J. Am. Chem. Soc., 1968, 90, 4616–
4625.
9 The formation of analogous intermediates has been described by Kochi in
his analysis of the mechanism of oxidative substitution catalyzed by Cu(II).8 In
this report, Kochi found through deuterium labeling experiments that the α- and
β- carbons of homobenzylic radicals scrambled upon oxidation by Cu(II), os-
tensibly due to the intermediacy of a symmetric, cationic intermediate that
undergoes nucleophilic attack by an exogeneous nucleophile.
10 Gillis, E. P.; Eastman, K. J.; Hill, M. D.; Donnelly, D. J.; Meanwell, N. A. J.
Med. Chem. 2015, 58, 8315−8359.
Author Contributions
‡S.N.G. and T.L.B. contributed equally.
ACKNOWLEDGMENT
The authors would like to thank the NIH (1R35GM125029), the
Sloan Research Foundation, and the University of Illinois for their
generous support of this work.
11 (a) Krapcho, A. P.; Glynn, G. A.; Grenon, B. J. Tetrahedron Lett. 1967, 8,
215-217. (b) Lee, A.; Michrowska, A.; Sulzer-Mosse, S.; List, B. Angew. Chem.
Int. Ed. 2011, 50, 1707-1710.
12
REFERENCES
Lucchini, V.; Modena, G.; Pasquato, L.; J. Chem. Soc., Chem. Commun.
1 (a) Caruano, J.; Muccioli, G. G.; Robiette, R. Org. Biomol. Chem. 2016, 14,
10134–10156. (b) Carey, J. S.; Laffan, D.; Thomson, C.; Williams, M. T. Org.
Biomol. Chem. 2006, 4, 2337-2347. (c) Vitaku, E.; Smith, D. T.; Njardarson, J.
T. J. Med. Chem. 2014, 57, 10257–10274. (d) Roughley, S. D.; Vernalis, A. M. J.
J. Med. Chem. 2011, 54, 3451–3479.
1992
, 293-294.
13
(a) Wuts, P. G. M.; Greene, T. W. Protection for the Amino Group.
In Greene’s Protective Groups in Organic Synthesis; 2014; pp 830. (b) Zhu, Y.;
Buchwald, S. L. J. Am. Chem. Soc. 2014, 136, 4500-4503.
14 Clark, A. J. Eur. J. Org. Chem. 2016, 2016, 2231–2243.
15 (a) Larsen, C. H..; Ridgway, B. H.; Shaw, J. T.; Smith, D. M.; Woerpel, K.
A. J. Am. Chem. Soc. 2005, 127, 10879-10884. (b) Larsen, C. H..; Ridgway, B.
H.; Shaw, J. T.; Woerpel, K. A. J. Am. Chem. Soc. 1999, 121, 12208-12209. (c)
Huan, F.; Chen, Q-Y.; Guo, Y. J. Org. Chem. 2016, 81, 7051-7063.
16 For additional mechanistic information and a proposed catalytic cycle, see
Supporting Information (SI).
2
For reviews see: (a) Wolfe, J. P. Top. Heterocycl. Chem. 2013, 32, 1–37.
(b) Garlets, Z. J.; White, D. R.; Wolfe, J. P. Asian J. Org. Chem. 2017, 6, 636-
653. For relevant methods see: (c) Ney, J. E.; Wolfe, J. P. Angew. Chem. Int.
Ed. 2004, 43, 3605–3608. (d) White, D. R.; Hutt, J. T.; Wolfe, J. P. J. Am. Chem.
Soc. 2015, 137, 11246–11249. (e) Zheng, W.; Chemler, S. R. J. Am. Chem. Soc.
2007, 129, 12948-12949. (f) Liwosz, T. W.; Chemler, S. R. J. Am. Chem. Soc.
2012, 134, 2020-2023. (g) Piou, T.; Rovis, T. Nature 2015, 527, 86–90. (h) Liu,
Y.-Y.; Yang, X.-H.; Song, R.-J.; Luo, S.; Li, J.-H. Nat. Commun. 2017, 8, 14720-
14725. (i) Qian, B.; Chen, S.; Wang, T.; Zhang, X.; Bao, H. J. Am. Chem. Soc.
ACS Paragon Plus Environment