O
This supports our assumption that there was no sign of racemization in our
OBut
24
synthetic scheme. {before recrystallization: [a]D 239.0 (c 1.06, MeOH),
HO
24
after first recrystallization: [a]D 238.8 (c 1.06, MeOH), after second
10
24
recrystallization: [a]D 240.3 (c 1.04, MeOH)}
i, ii
§ Selected data for 9a: mp 189–191 °C; dH([2H6]DMSO, 400 MHz) 8.00 (br
s, 1H), 5.40 (br s,1H), 3.87 (d, 2H), 2.51 (d, 3H); dC([2H6]DMSO, 101
MHz) 169.8, 156.5, 44.5, 36.9; n(CHCl3)/cm21 3024, 1772, 1724, 1211;
HRMS [FAB, (M + 1)+]: calc. 130.0617, found 130.1612. For 9b: mp
182–185 °C; dH(CD3OD, 400 MHz) 3.99 (q, 1H), 2.55 (s, 3H), 1.27 (d, 3H);
dC(CD3OD, 101 MHz) 172.5, 155.1, 50.1, 34.9, 14.8; n(CHCl3)/cm21
3006, 1768, 1724, 1214; HRMS [FAB, (M + 1)+]: calc. 144.0773, found
O
MeO-PEG-O
OH
N
H
11
iii
O
R1
O
MeO-PEG-O
MeO-PEG-O
N
H
CO2But
24
O
144.0766; [a]D 239.0 (c 1.06, MeOH). For 9c: mp 138–140 °C;
N
H
dH(CDCl3, 400 MHz) 6.73 (br s, 1H), 4.32 (br s, 1H), 3.90 (d, 1H), 2.72 (s,
3H), 2.23 (m, 1H), 1.04 (d, 3H), 0.91 (d, 3H); dC(CDCl3, 101 MHz) 171.3,
156.9, 60.9, 38.0, 30.2, 18.6, 15.9; n(CHCl3)/cm21 3024, 1774, 1718, 1208;
13
vi
ii, iv
O
R1
O
24
H
N
N
R2
HRMS [FAB, (M + Na)+]: calc. 194.0905, found 194.0914; [a]D 273.0
Boc
(c 0.69, CHCl3). For 9d: dH(DMSO, 400 MHz) 8.17 (s, 1H), 5.53 (q, 1H),
3.97 (d, 1H), 2.49 (d, 3H), 1.77 (m, 1H), 1.18–1.34 (m, 2H), 0.90 (d, 3H),
0.84 (t, 3H); dC(CD3OD, 101 MHz) 169.6, 154.2, 57.3, 34.3, 33.6, 20.8,
11.2, 8.0; n(CHCl3)/cm21 3024, 2986, 1774, 1718, 1214; HRMS [FAB,
(M+1)+]: calc. 186.1242, found 186.1239. For 9e: mp 210–213 °C;
dH(CDCl3, 400 MHz) 7.30 (m, 5H), 5.45 (br s, 1H), 4.26 (q, 1H), 4.23 (m,
1H), 3.28 (dd, 1H), 2.90 (dd, 1H), 2.58 (d, 3H) ; dC(CDCl3, 101 MHz)
170.6, 155.5, 134.6, 129.4, 128.9, 127.6, 61.0, 56.9, 37.8; n(CHCl3)/cm21
3011, 1762, 1724, 1227; HRMS [FAB, (M + 1)+]: calc. 220.1086, found
N
O
N
H
H
O
14
ii, v
O
O
N
R1
R2
MeO-PEG-O
NH
+
OH
N
H
HN
O
11
9
24
220.1094; [a]D 263.9 (c 0.39, MeOH). For 9f: mp 125–128 °C;
R1
O
dH(CDCl3, 400 MHz) 7.30 (m, 5H), 7.16 (d, 2H), 6.86 (d, 2H), 5.24 (s, 1H),
4.35 (br s, 1H), 4.15 (m, 1H), 3.95 (d, 2H), 3.78 (s, 3H), 3.23 (dd, 1H), 2.69
(dd, 1H); dC(CDCl3, 101 MHz) 170.6, 159.4, 155.6, 134.9, 130.7, 129.3,
128.9, 127.7, 127.5, 113.8, 56.9, 55.2, 53.9, 37.8; n(CHCl3)/cm21 3011,
1755, 1737, 1215; HRMS [FAB, (M + Na)+]: calc. 348.1324, found
C
N
CO2But
12
Scheme 2 Reagents and conditions: i, MeO-PEG-CH2CH2NH2, DCC,
DMAP; ii, TFA–CH2Cl2 (1:1 v/v); iii, 12, Et3N; iv, 4, DCC; v, dilution,
24
348.1335; [a]D 276.0 (c 0.42, MeOH). For 9g: dH(CDCl3, 400 MHz)
Pri2NEt (1.1 equiv.), vi, 1
M NaOH.
7.28 (m, 5H), 6.21 (s, 1H), 4.26 (q, 1H), 4.21 (m, 1H), 3.21 (dd, 1H), 2.94
(dd, 1H) 2.53 (t, 2H), 1.55 (m, 1H), 0.90 (d, 3H); dC(CDCl3, 101 MHz)
170.9, 156.1, 134.5, 129.5, 128.8, 127.5, 58.4, 56.8, 37.5, 26.6, 20.3;
n(CHCl3)/cm21 3440, 3023, 1774, 1731, 1214; HRMS [FAB, (M+H)+]:
Table 1 3-Aminoimidazoline-2,4-diones generated via Scheme 2
O
24
calc. 262.1556, found 262.1563; [a]D 266.7 (c 0.59, MeOH). For 9h: mp
R1
R2
134–136 °C; dH(CD3OD, 400 MHz) 3.99 (q, 1H), 1.26 (d, 3H); dC(CD3OD,
101 MHz) 173.1, 156, 50.1 14.9; n(CHCl3)/cm21 3021, 1784, 1726, 1208;
HRMS [FAB, (M + 1)+]: calc. 130.0616, found 130.0612. For 9j: mp
150–153 °C; dH(CD3OD, 400 MHz) 3.95 (m, 1H), 1.71 (m, 1H), 1.54 (m,
1H), 1.39 (m, 1H), 0.84 (d, 6H); dC(CD3OD, 101 MHz) 171.3, 154.7, 51.3,
37.9, 21.6, 19.4, 17.1; n(CHCl3)/cm21 3023, 1793, 1724, 1208; HRMS
N
O
NH
HN
9
Compound
R1
R2
Yield (%)a
[FAB, (M + 1)+]: calc. 172.1086, found 172.1080; [a]D 278.1 (c 0.64,
24
9a
9b
9c
9d
9e
9f
9g
9h
9j
H
Me
Me
Me
Me
Me
62
73
75
78
80
MeOH). For 9k: mp 201–203 °C; dH(CD3OD, 400 MHz) 7.16 (m, 5H), 4.23
(m, 1H), 3.03 (dd, 1H), 2.89 (dd, 1H); HRMS [FAB, (M + 1)+]: calc.
206.0930, found 206.0924.
Me
Pri
Bus
Bn
Bn
Bn
Me
Bui
Bn
1 Molecular Diversity and Combinatorial Chemistry, ed. I. M. Chaiken
and K. D. Janda, American Chemical Society, Washington DC, 1996;
L. A. Thompson and J. A. Ellman, Chem. Rev., 1996, 96, 555; M. A.
Gallop, R. W. Barrett, W. J. Dower, S. P. A. Fodor and E. M. Gordon,
J. Med. Chem., 1994, 37, 1233.
2 A. K. Szardenings, T. S. Burkoth, H. H. Lu, D. W. Tien and D. A.
Campbell, Tetrahedron, 1997, 53, 6573; D. W. Gordon, J. Steele,
Bioorg. Med. Chem. Lett., 1995, 5, 47.
p-MeOC6H4CH2 78
Bui
H
H
74
60
67
67
9k
H
a Yields are based on the conversion of 11 to 9 and are isolated yields.
3 J. S. Panek and B. Zhu, Tetrahedron Lett., 1996, 37, 8151.
4 J. Matthews and R. A. Rivero, J. Org. Chem., 1997, 62, 6090; S. W.
Kim, S. Y. Ahn, J. S. Koh, J. H. Lee, S. Ro and H. Y. Cho, Tetrahedron
Lett., 1997, 38, 460.
5 J. Gut, A. Novocek and P. Fiedler, Collect. Czech. Chem. Commun.,
1968, 33, 2087.
materials that had accumulated during the synthesis of 9. We
could use this PEG-11 again without any significant reduction
in loading or yield, which was confirmed by 1H NMR
analysis.
In conclusion, we have shown both solution and liquid phase
methodologies for the controlled stepwise synthesis of 3-ami-
noimidazoline-2,4-diones. In our strategy we have provided a
method that allows for the incorporation of two points of
diversity which can be drawn from a large pool of building
blocks. Finally, our approach allows for polymer regeneration
and its reuse.
Financial support of this research by the Skaggs Institute for
Chemical Biology and NIH GM56154 is gratefully acknowl-
edged. C.-W. C. wishes to thank Korea Science and Engineer-
ing Foundation (KOSEF) for a postdoctoral fellowship. We also
thank Professor R. V. Hoffman for many helpful discussions.
6 J. G. Dain, Doctoral Dissertation, Duquesne University, 1970, Diss.
Abstr. Int. B, 1971, 32, 160; Chem. Abstr., 1972, 76, 3807.
7 T. J. Schwan and T. J. Sanford, J. Heterocycl. Chem., 1979, 16, 1655.
8 A. Lindemann, N. H. Khan and K. Hoffman, J. Am. Chem. Soc., 1952,
74, 476.
9 J. Gante and W. Lautsch, Chem. Ber., 1964, 97, 994.
10 R. V. Hoffman and N. K. Nayyar, J. Org. Chem., 1995, 60, 5992.
11 Professor R.V. Hoffman, Personal communication.
12 I. Lalezari, J. Heterocycl. Chem., 1985, 22, 741.
13 H. Han and K. D. Janda, J. Am. Chem. Soc., 1996, 118, 2539.
14 D. J. Gravert and K. D. Janda, Chem. Rev., 1997, 97, 489.
15 P. Wentworth Jr., A. M. Vandersteen and K. D. Janda, Chem Commun.,
1997, 759; H. Han and K. D. Janda, Angew. Chem., Int. Ed. Engl., 1997,
36, 1731; H. Han and K. D. Janda, J. Am. Chem. Soc., 1996, 118, 7632;
H. Han and K. D. Janda, Tetrahedron Lett., 1997, 38, 1527.
16 Isocyanates 12 were prepared from tert-butyl amino acids and
triphosgene. See S. Goldschmidt and M. Wick, Liebigs Ann. Chem.,
1952, 575, 217 for this preparation.
Notes and references
‡ Optical rotation values for 9b,c,e–g,j are reported in their characterization
data (see below). In the case of 9b, there was no significant change in its
optical rotation value after a first and second recrystallization from EtOH.
Communication 8/07067I
2704
Chem. Commun., 1998, 2703–2704