Organometallics 1999, 18, 3255-3257
3255
Or th om eta la tion of F u n ction a lized P h osp h in oa m in es
w ith La te Tr a n sition Meta l Com p lexes
Kirsty G. Gaw, Alexandra M. Z. Slawin, and Martin B. Smith*
Department of Chemistry, Loughborough University,
Loughborough, Leicestershire, LE11 3TU, U.K.
Received May 14, 1999
Summary: The neutral metal complexes cis-[Pt(CH3)2-
{o-Ph2PN(H)C6H4C(O)CH3-P}2] and [RhCl2(Cp*){o-Ph2-
prising given the recent interest displayed in this unique
class of ligand.10 Here we describe the synthesis of two
new functionalized phosphinoamine ligands and report
our preliminary orthometalation studies of these coor-
dinated ligands at platinum(II) and rhodium(III) metal
centers.
PN(H)C6H4C(O)Ph-P}] are excellent precursors for new
2
five-membered M-P-N-C-C metallacycles via σ(Csp
-
H) bond activation. The synthesis and characterization
including the molecular structures of cis-[Pt{o-Ph2PN-
(H)C6H3C(O)CH3-P,C}2]‚OEt2 and [RhCl(Cp*){o-Ph2PN-
(H)C6H3C(O)Ph-P,C}]‚0.5CHCl3 are reported.
The new ligands o-Ph2PN(H)C6H4X [X ) C(O)CH3, 1;
X ) C(O)Ph, 2], closely related to Ph2PN(H)C6H5,11 were
successfully synthesized from cheap, commercially avail-
able Ph2PCl and o-H2NC6H4X in respectable yields (ca.
70%). Moreover this general procedure has allowed us
Orthometalation reactions constitute an important
class of reaction that have been widely employed in the
synthesis of numerous organometallic compounds.1
Whereas the predominance of these cyclometalated
compounds are mononuclear, several recent examples
of bi- and tetranuclear complexes have been described.2
In large, such interest derives from the use of these
compounds in disparate areas including catalysis,3
organic synthesis,4 in material science,5 and resolution
procedures6 and as antitumor agents.7
The chemical literature contains a plethora of reports
describing orthometalated triarylphosphine or phos-
phite complexes.1a,3,6,8 Furthermore the first example of
a cyclometalated compound with a water-soluble tri-
arylphosphine, TPPTS [tris(3-sodium sulfonatophenyl)-
phosphine], was recently described by Pruchnik and co-
workers.9 Although cleavage of aromatic C-H bonds in
tertiary phosphines and phosphites is well-known, to
the best of our knowledge, examples with phosphinoam-
ines bearing one (or more) combinations of P-N/P-C
bonds have not been investigated. This is rather sur-
to routinely prepare these ligands in batches up to ca.
10 g. Both 1 and 2 were characterized by the usual
spectroscopic and analytical techniques.12 The 31P{1H}
NMR spectra (36.2 MHz) of 1 (and 2) show single P
resonances at δ(P) 25.6 (for 1) and 26.5 ppm (for 2),
which is typical for this class of ligand.10c Furthermore
we formulate 1 and 2 as monosubstituted compounds
since in the H NMR spectra a small J (PH) coupling
of ca. 7.5 Hz was observed. Oxidation of 1 with 30%
aqueous hydrogen peroxide gave the phosphorus(V)
compound o-Ph2P(O)N(H)C6H4C(O)CH3, 3, whose mo-
lecular structure has been determined (Figure 1). The
X-ray crystal structure13 is broadly as anticipated, with
a P(1)-O(1) bond length of 1.472(2) (molecule 1) and
1.470(2) Å (molecule 2), shorter than that observed in
Ph2PN(H)P(O)Ph2 [1.508(2) Å], which exists in the solid
state as a hydrogen-bonded dimer pair.10c Furthermore
there is also a strong intramolecular N-H‚‚‚O hydrogen
bond [N(1)‚‚‚O(19) 2.62 Å, H(1)‚‚‚O(19) 1.78 Å; N(1)-
H(1)‚‚‚O(19) 143° (molecule 1); N(21)‚‚‚O(21) 2.64 Å,
H(21)‚‚‚O(21) 1.82 Å; N(21)-H(21)‚‚‚O(21) 141° (mol-
ecule 2)].
1
2
* To whom correspondence should be addressed. Fax number: +44
(01509) 223925. E-mail: m.b.smith@lboro.ac.uk.
(1) For recent examples, see: Cromhout, N. L.; Gallagher, J . F.;
Manning, A. R.; Paul, A. Organometallics 1999, 18, 1119-1121. (b)
Gu¨l, N, Nelson, J . H. Organometallics 1999, 18, 709-725.
(2) (a) Bosque, R.; Lo´pez, C.; Solans, X.; Font-Bardia, M. Organo-
metallics 1999, 18, 1267-1274. (b) O’Keefe, B. J .; Steel, P. J . Orga-
nometallics 1998, 17, 3621-3623.
(3) (a) Albisson, D. A.; Bedford, R. B.; Lawrence, S. E.; Scully, P. N.
Chem. Commun. 1998, 2095-2096. (b) Shaw, B. L.; Perera, S. D.;
Staley, E. A. Chem. Commun. 1998, 1361-1362. (c) Luo, F.-T.;
J eevanandam, A.; Basu, M. K. Tetrahedron Lett. 1998, 39, 7939-7942.
(d) Herrmann, W. A.; Brossmer, C.; Reisinger, C.-P.; Riermeier, T. H.;
O¨ fele, K.; Beller, M. Chem. Eur. J . 1997, 3, 1357-1364. (e) Herrmann,
W. A.; Brossmer, C.; O¨ fele, K.; Reisinger, C.-P.; Priermeier, T.; Beller,
M., Fischer, H. Angew. Chem., Int. Ed. Engl. 1995, 34, 1844-1848. (f)
Beller, M.; Fischer, H.; Herrmann, W. A.; O¨ fele, K.; Brossmer, C.
Angew. Chem., Int. Ed. Engl. 1995, 34, 1848-1849.
Ligand displacement of cod (cod ) cycloocta-1,5-diene)
from [Pt(CH3)2(cod)] with 2 equiv of 1 in dichlo-
romethane gave cis-[Pt(CH3)2(1)2], 4 (Scheme 1). The
31P{1H} NMR spectrum of 4 showed a single resonance
(4) Ryabov, A. D. Synthesis 1985, 233-252.
(5) Bruce, D. W. J . Chem. Soc., Dalton Trans. 1993, 2983-2989.
(6) Airey, A. L.; Swiegers, G. F.; Willis, A. C.; Wild, S. B. J . Chem.
Soc., Chem. Commun. 1995, 693-694.
(7) Navarro-Ranninger, C.; Lo´pez-Solera, I.; Gonza´lez, V. M.; Pe´rez,
J . M.; Alvarez-Valde´s, A.; Mart´ın, A.; Raithby, P. R.; Masaguer, J . R.;
Alonso, C. Inorg. Chem. 1996, 35, 5181-5187.
(10) (a) Zhang, F.-Y.; Pai, C.-C.; Chan, A. S. C. J . Am. Chem. Soc.
1998, 120, 5808-5809. (b) Shen, J .; Stevens, E. D.; Nolan, S. P.
Organometallics 1998, 17, 3875-3882. (c) Bhattacharyya, P.; Slawin,
A. M. Z.; Smith, M. B.; Woollins, J . D. Inorg. Chem. 1996, 35, 3675-
3682.
(11) Hudson, R. F.; Searle, R. J . G.; Devitt, F. H. J . Chem. Soc. C
1966, 1001-1004.
(8) Bedford, R. B.; Chaloner, P. A.; Hitchcock, P. B. J . Chem. Soc.,
Chem. Commun. 1995, 2049-2050.
(9) Pruchnik, F. P.; Starosta, R.; Smolenski, P.; Shestakova, E.;
Lahuerta, P. Organometallics 1998, 17, 3684-3689.
10.1021/om990363b CCC: $18.00 © 1999 American Chemical Society
Publication on Web 07/30/1999