Welcome to LookChem.com Sign In|Join Free

CAS

  • or

4039-32-1

Post Buying Request

4039-32-1 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

4039-32-1 Usage

Chemical Properties

light yellow to yellow crystalline powder

Physical properties

distillable low-melting solid; mp 70–72 °C, bp 115 °C/1mmHg. LHMDS is a cyclic trimer in the solid state,3 whereas in benzene solution it exists in a monomer–dimer equilibrium. LHMDS exists as a tetramer-dimer mixture in hydrocarbons and as a dimer-monomer mixture in THF and ether. Treatment of LHMDS with trialkylamines increases the monomer concentration, whereas the use of diamines affords exclusively the corresponding chelated monomer. LHMDS is less soluble, less basic, more stable, and much less sensitive to air compared to lithium diisopropylamide. pKa 29.5 (THF, 27 °C).

Uses

Different sources of media describe the Uses of 4039-32-1 differently. You can refer to the following data:
1. Lithium bis(trimethylsilyl)amide is used as nonnucleophilic base to generate kinetic ketone and ester enolates. It is considerably more selective than LDA and undesired reductions (e.g., of nonenolizable ketones observed in the case of LDA) can be avoided by using LHMDS.
2. Lithium Hexamethyldisilazide is widely used as strong nonnucleophilic base
3. Lithium bis(trimethylsilyl)amide is a base used in preparation of dienes and enolates. It is used to catalyze the addition of phosphine P-H bonds to carbodiimides leading to phosphaguanidines. Lithium bis(trimethylsilyl)amide is also used in a novel three-step synthesis of disubstituted 1,2,5-thiadiazoles.

Preparation

It is conveniently prepared by the reaction of hexamethyldisilazane with n-butyllithium in hexane. For most uses the hexane is then evaporated and replaced with THF.

General Description

This product, 0.5 M in 2-methyltetrahydrofuran aligns with Safer Solvents and Auxiliaries, Use of Renewable Feedstocks and Inherently Safer Chemistry for Accident Prevention.

Flammability and Explosibility

Highlyflammable

Check Digit Verification of cas no

The CAS Registry Mumber 4039-32-1 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 4,0,3 and 9 respectively; the second part has 2 digits, 3 and 2 respectively.
Calculate Digit Verification of CAS Registry Number 4039-32:
(6*4)+(5*0)+(4*3)+(3*9)+(2*3)+(1*2)=71
71 % 10 = 1
So 4039-32-1 is a valid CAS Registry Number.
InChI:InChI=1/C6H19NSi2.Li/c1-8(2,3)7-9(4,5)6;/h7H,1-6H3;/q;+1

4039-32-1 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • TCI America

  • (H0915)  Lithium Bis(trimethylsilyl)amide (ca. 26% in Tetrahydrofuran, ca. 1.3mol/L)  

  • 4039-32-1

  • 100mL

  • 425.00CNY

  • Detail
  • TCI America

  • (H0915)  Lithium Bis(trimethylsilyl)amide (ca. 26% in Tetrahydrofuran, ca. 1.3mol/L)  

  • 4039-32-1

  • 500mL

  • 1,280.00CNY

  • Detail
  • Alfa Aesar

  • (42595)  Lithium bis(trimethylsilyl)amide   

  • 4039-32-1

  • 5g

  • 240.0CNY

  • Detail
  • Alfa Aesar

  • (42595)  Lithium bis(trimethylsilyl)amide   

  • 4039-32-1

  • 25g

  • 880.0CNY

  • Detail
  • Alfa Aesar

  • (41872)  Lithium bis(trimethylsilyl)amide, 0.9-1.1M in hexane, packaged under Argon in resealable ChemSeal? bottles   

  • 4039-32-1

  • 100g

  • 522.0CNY

  • Detail
  • Alfa Aesar

  • (41872)  Lithium bis(trimethylsilyl)amide, 0.9-1.1M in hexane, packaged under Argon in resealable ChemSeal? bottles   

  • 4039-32-1

  • 500g

  • 2232.0CNY

  • Detail
  • Alfa Aesar

  • (L15012)  Lithium bis(trimethylsilyl)amide, 20% (ca 1.06M) soln. in THF/ethylbenzene, packaged in resealable septum cap bottle   

  • 4039-32-1

  • 100ml

  • 602.0CNY

  • Detail
  • Alfa Aesar

  • (L15012)  Lithium bis(trimethylsilyl)amide, 20% (ca 1.06M) soln. in THF/ethylbenzene, packaged in resealable septum cap bottle   

  • 4039-32-1

  • 500ml

  • 2404.0CNY

  • Detail
  • Alfa Aesar

  • (45846)  Lithium bis(trimethylsilyl)amide, stab. with hexane   

  • 4039-32-1

  • 5g

  • 108.0CNY

  • Detail
  • Alfa Aesar

  • (45846)  Lithium bis(trimethylsilyl)amide, stab. with hexane   

  • 4039-32-1

  • 25g

  • 403.0CNY

  • Detail
  • Aldrich

  • (225770)  Lithiumbis(trimethylsilyl)amidesolution  1.0 M in THF

  • 4039-32-1

  • 225770-100ML

  • 583.83CNY

  • Detail
  • Aldrich

  • (225770)  Lithiumbis(trimethylsilyl)amidesolution  1.0 M in THF

  • 4039-32-1

  • 225770-4X25ML

  • 583.83CNY

  • Detail

4039-32-1SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 11, 2017

Revision Date: Aug 11, 2017

1.Identification

1.1 GHS Product identifier

Product name Lithium bis(trimethylsilyl)amide

1.2 Other means of identification

Product number -
Other names Hexamethyldisilazane lithium salt

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only. Intermediates
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:4039-32-1 SDS

4039-32-1Synthetic route

1,1,1,3,3,3-hexamethyl-disilazane
999-97-3

1,1,1,3,3,3-hexamethyl-disilazane

lithium hexamethyldisilazane
4039-32-1

lithium hexamethyldisilazane

Conditions
ConditionsYield
With n-butyllithium In hexane at 20℃; Inert atmosphere;99.5%
With lithium at -20℃; for 16h; Time; Temperature;99.5%
With n-butyllithium In hexane at 20℃; for 24h; Inert atmosphere; Schlenk technique;92%
lithium bis(trimethylsilyl)amide diethyl etherate
18400-61-8

lithium bis(trimethylsilyl)amide diethyl etherate

lithium hexamethyldisilazane
4039-32-1

lithium hexamethyldisilazane

N,N,N'-tris(trimethylsilyl)phosphenimidous amide
50732-21-3, 65428-75-3

N,N,N'-tris(trimethylsilyl)phosphenimidous amide

2,2,6,6-tetramethylpiperidinyl-lithium
38227-87-1

2,2,6,6-tetramethylpiperidinyl-lithium

A

N-trimethylsilylimidophosphenous acid 2,2,6,6-tetramethylpiperidine
72821-01-3

N-trimethylsilylimidophosphenous acid 2,2,6,6-tetramethylpiperidine

B

lithium hexamethyldisilazane
4039-32-1

lithium hexamethyldisilazane

Conditions
ConditionsYield
In tetrahydrofuran at 40℃; for 3h;A 4.6 g
B n/a
tetrakis(trimethylsilyl)tetrazene
52764-24-6

tetrakis(trimethylsilyl)tetrazene

lithium hexamethyldisilazane
4039-32-1

lithium hexamethyldisilazane

Conditions
ConditionsYield
With lithium In diethyl ether at 36℃; for 72h;20 % Spectr.
Lithium-bis(trimethylsilyl)tetrazenid
79345-33-8, 79345-34-9

Lithium-bis(trimethylsilyl)tetrazenid

A

N,N'-bis(trimethylsilyl)hydrazine
692-56-8

N,N'-bis(trimethylsilyl)hydrazine

B

Dilithium-bis(trimethylsilyl)tetrazenid
79345-33-8, 79345-34-9

Dilithium-bis(trimethylsilyl)tetrazenid

C

lithium hexamethyldisilazane
4039-32-1

lithium hexamethyldisilazane

Conditions
ConditionsYield
In diethyl ether at 70℃; for 8h;A 0.9 mmol
B 1.0 mmol
C 0.1 mmol
Dilithium-bis(trimethylsilyl)tetrazenid
79345-33-8, 79345-34-9

Dilithium-bis(trimethylsilyl)tetrazenid

A

N,N'-bis(trimethylsilyl)hydrazine
692-56-8

N,N'-bis(trimethylsilyl)hydrazine

B

Dilithium N,N'-bis(trimethylsilyl)hydrazide tetramer
15114-92-8, 33509-48-7, 53380-51-1

Dilithium N,N'-bis(trimethylsilyl)hydrazide tetramer

C

lithium hexamethyldisilazane
4039-32-1

lithium hexamethyldisilazane

Conditions
ConditionsYield
In benzene at 120℃; for 40h;A 0.1 mmol
B 1.5 mmol
C 0.2 mmol
Dilithium-bis(trimethylsilyl)tetrazenid
79345-33-8, 79345-34-9

Dilithium-bis(trimethylsilyl)tetrazenid

A

Dilithium N,N'-bis(trimethylsilyl)hydrazide tetramer
15114-92-8, 33509-48-7, 53380-51-1

Dilithium N,N'-bis(trimethylsilyl)hydrazide tetramer

B

lithium hexamethyldisilazane
4039-32-1

lithium hexamethyldisilazane

Conditions
ConditionsYield
In diethyl ether at 120℃; for 15h;A 0.2 mmol
B 1.8 mmol
Lithium-tris(trimethylsilyl)tetrazenid
79345-35-0

Lithium-tris(trimethylsilyl)tetrazenid

A

tris(trimethylsilyl)amine
1586-73-8

tris(trimethylsilyl)amine

B

trimethylsilylazide
4648-54-8

trimethylsilylazide

C

N-lithio-N,N',N'-[tris(trimethylsilyl)]hydrazide
22846-03-3

N-lithio-N,N',N'-[tris(trimethylsilyl)]hydrazide

D

lithium hexamethyldisilazane
4039-32-1

lithium hexamethyldisilazane

Conditions
ConditionsYield
In benzene at 25℃; for 6h;A 1.5 mmol
B 0.3 mmol
C 0.2 mmol
D 0.3 mmol
1-bromo-butane
109-65-9

1-bromo-butane

1,1,1,3,3,3-hexamethyl-disilazane
999-97-3

1,1,1,3,3,3-hexamethyl-disilazane

lithium hexamethyldisilazane
4039-32-1

lithium hexamethyldisilazane

Conditions
ConditionsYield
With lithium 1) 1 h mixing and 1 h reflux; 2) 30 min reflux; Yield given. Multistep reaction;
n-butyllithium
109-72-8, 29786-93-4

n-butyllithium

1,1,1,3,3,3-hexamethyl-disilazane
999-97-3

1,1,1,3,3,3-hexamethyl-disilazane

lithium hexamethyldisilazane
4039-32-1

lithium hexamethyldisilazane

Conditions
ConditionsYield
In hexane
With tetramethylsilane In tetrahydrofuran; hexane at -73℃; for 0.0333333h;100 % Spectr.
In tetrahydrofuran; hexane at -78℃; for 1h;
In tetrahydrofuran at -78 - 20℃; for 1h; Product distribution / selectivity;
9H-fluoren-9-yllithium
881-04-9

9H-fluoren-9-yllithium

1,1,1,3,3,3-hexamethyl-disilazane
999-97-3

1,1,1,3,3,3-hexamethyl-disilazane

A

9H-fluorene
86-73-7

9H-fluorene

B

lithium hexamethyldisilazane
4039-32-1

lithium hexamethyldisilazane

Conditions
ConditionsYield
In tetrahydrofuran; diethyl ether at 27℃; Equilibrium constant;
<(pyridin-2-yl)phenylmethyl>lithium
56501-99-6

<(pyridin-2-yl)phenylmethyl>lithium

1,1,1,3,3,3-hexamethyl-disilazane
999-97-3

1,1,1,3,3,3-hexamethyl-disilazane

A

2-Benzylpyridine
101-82-6

2-Benzylpyridine

B

lithium hexamethyldisilazane
4039-32-1

lithium hexamethyldisilazane

Conditions
ConditionsYield
In tetrahydrofuran; diethyl ether at 27℃; Equilibrium constant;
<(pyridin-4-yl)phenylmethyl>lithium
81771-00-8

<(pyridin-4-yl)phenylmethyl>lithium

1,1,1,3,3,3-hexamethyl-disilazane
999-97-3

1,1,1,3,3,3-hexamethyl-disilazane

A

4-benzyl pyridine
2116-65-6

4-benzyl pyridine

B

lithium hexamethyldisilazane
4039-32-1

lithium hexamethyldisilazane

Conditions
ConditionsYield
In tetrahydrofuran; diethyl ether at 27℃; Equilibrium constant;
Lithium; (1aR,2R,7aR)-2,7a-dimethyl-7-oxo-1a,2,7,7a-tetrahydro-1-oxa-cyclopropa[b]naphthalen-2-olate

Lithium; (1aR,2R,7aR)-2,7a-dimethyl-7-oxo-1a,2,7,7a-tetrahydro-1-oxa-cyclopropa[b]naphthalen-2-olate

1,1,1,3,3,3-hexamethyl-disilazane
999-97-3

1,1,1,3,3,3-hexamethyl-disilazane

(1aR,2R,7aR)-2-Hydroxy-2,7a-dimethyl-1a,7a-dihydro-2H-1-oxa-cyclopropa[b]naphthalen-7-one
125541-07-3

(1aR,2R,7aR)-2-Hydroxy-2,7a-dimethyl-1a,7a-dihydro-2H-1-oxa-cyclopropa[b]naphthalen-7-one

B

lithium hexamethyldisilazane
4039-32-1

lithium hexamethyldisilazane

Conditions
ConditionsYield
In tetrahydrofuran at 25℃; Thermodynamic data; ΔH;
Lithium; (1aR,7R,7aR)-1a,7,7a-trimethyl-2-oxo-1a,2,7,7a-tetrahydro-1-oxa-cyclopropa[b]naphthalen-7-olate

Lithium; (1aR,7R,7aR)-1a,7,7a-trimethyl-2-oxo-1a,2,7,7a-tetrahydro-1-oxa-cyclopropa[b]naphthalen-7-olate

1,1,1,3,3,3-hexamethyl-disilazane
999-97-3

1,1,1,3,3,3-hexamethyl-disilazane

(1aR,7R,7aR)-7-Hydroxy-1a,7,7a-trimethyl-7,7a-dihydro-1aH-1-oxa-cyclopropa[b]naphthalen-2-one
68437-75-2, 125637-05-0

(1aR,7R,7aR)-7-Hydroxy-1a,7,7a-trimethyl-7,7a-dihydro-1aH-1-oxa-cyclopropa[b]naphthalen-2-one

B

lithium hexamethyldisilazane
4039-32-1

lithium hexamethyldisilazane

Conditions
ConditionsYield
In tetrahydrofuran at 25℃; Thermodynamic data; ΔH;
C10H8LiN
97254-19-8

C10H8LiN

1,1,1,3,3,3-hexamethyl-disilazane
999-97-3

1,1,1,3,3,3-hexamethyl-disilazane

A

C6H4NCH2CHCCH2
491-35-0

C6H4NCH2CHCCH2

B

lithium hexamethyldisilazane
4039-32-1

lithium hexamethyldisilazane

Conditions
ConditionsYield
In tetrahydrofuran; diethyl ether at 27℃; Equilibrium constant;
Dilithium N,N'-bis(trimethylsilyl)hydrazide tetramer
15114-92-8, 33509-48-7, 53380-51-1

Dilithium N,N'-bis(trimethylsilyl)hydrazide tetramer

A

N,N'-bis(trimethylsilyl)hydrazine
692-56-8

N,N'-bis(trimethylsilyl)hydrazine

B

tetrakis(trimethylsilyl)hydrazine
20156-62-1

tetrakis(trimethylsilyl)hydrazine

C

tris(trimethylsilyl)hydrazine
13272-02-1

tris(trimethylsilyl)hydrazine

D

1,1,1,3,3,3-hexamethyl-disilazane
999-97-3

1,1,1,3,3,3-hexamethyl-disilazane

E

lithium hexamethyldisilazane
4039-32-1

lithium hexamethyldisilazane

Conditions
ConditionsYield
With tin(ll) chloride In diethyl ether for 48h; Product distribution; Ambient temperature; var.: reagent;
C17H17O3S(1-)*C6H18NSi2(1-)*2Li(1+)

C17H17O3S(1-)*C6H18NSi2(1-)*2Li(1+)

A

lithium hexamethyldisilazane
4039-32-1

lithium hexamethyldisilazane

B

p-phenylsulfonylisobutyrophenone lithium enolate

p-phenylsulfonylisobutyrophenone lithium enolate

Conditions
ConditionsYield
In tetrahydrofuran at 25℃; Equilibrium constant;
C23H17O(1-)*C6H18NSi2(1-)*2Li(1+)

C23H17O(1-)*C6H18NSi2(1-)*2Li(1+)

A

lithium hexamethyldisilazane
4039-32-1

lithium hexamethyldisilazane

B

6-phenyl-2-benzyl-α-tetralone lithium enolate

6-phenyl-2-benzyl-α-tetralone lithium enolate

Conditions
ConditionsYield
In tetrahydrofuran at 25℃; Equilibrium constant;
2-(1,3-isoindolinedion-2-yl)-5-(2-methylpropionyl)indane
172680-90-9

2-(1,3-isoindolinedion-2-yl)-5-(2-methylpropionyl)indane

bromoacetic acid methyl ester
96-32-2

bromoacetic acid methyl ester

1,1,1,3,3,3-hexamethyl-disilazane
999-97-3

1,1,1,3,3,3-hexamethyl-disilazane

A

2-(1,3-isoindolinedion-2-yl)-5-(2,2-dimethyl-3-methoxycarbonyl-propionyl)indane
172680-91-0

2-(1,3-isoindolinedion-2-yl)-5-(2,2-dimethyl-3-methoxycarbonyl-propionyl)indane

B

lithium hexamethyldisilazane
4039-32-1

lithium hexamethyldisilazane

Conditions
ConditionsYield
With n-butyllithium; ammonium chloride In tetrahydrofuran; hexane
n-butyllithium (1.60M)-hexane

n-butyllithium (1.60M)-hexane

3-(trimethylsilyl)prop-2-yn-1-al
2975-46-4

3-(trimethylsilyl)prop-2-yn-1-al

1,1,1,3,3,3-hexamethyl-disilazane
999-97-3

1,1,1,3,3,3-hexamethyl-disilazane

lithium hexamethyldisilazane
4039-32-1

lithium hexamethyldisilazane

Conditions
ConditionsYield
In tetrahydrofuran
(η5-C5H4Li)Re(NO)(PPh3)(CH3)

(η5-C5H4Li)Re(NO)(PPh3)(CH3)

1,1,1,3,3,3-hexamethyl-disilazane
999-97-3

1,1,1,3,3,3-hexamethyl-disilazane

A

(η5-C5H5)(Me)(NO)(PPh3)rhenium(II)

(η5-C5H5)(Me)(NO)(PPh3)rhenium(II)

B

lithium hexamethyldisilazane
4039-32-1

lithium hexamethyldisilazane

Conditions
ConditionsYield
In tetrahydrofuran conducted under dry N2 atmosphere; equilibrium at -24°C;; monitored by (31)P-NMR-spectroscopy;;A >99
B n/a
Li(1+){(η5-C5H5)Re(NO)(PPh3)}(1-)

Li(1+){(η5-C5H5)Re(NO)(PPh3)}(1-)

1,1,1,3,3,3-hexamethyl-disilazane
999-97-3

1,1,1,3,3,3-hexamethyl-disilazane

A

(η5-cyclopentadienyl)rhenium(NO)(PPh3)(hydride)

(η5-cyclopentadienyl)rhenium(NO)(PPh3)(hydride)

B

lithium hexamethyldisilazane
4039-32-1

lithium hexamethyldisilazane

Conditions
ConditionsYield
In not given conducted under dry N2 atmosphere; complete transformation at -24°C after 2 d;; monitored by (31)P-NMR-spectroscopy;;A >99
B n/a
germanium(II) chloride-dioxan

germanium(II) chloride-dioxan

chlorobis(trimethylsilyl)methane
5926-35-2

chlorobis(trimethylsilyl)methane

lithium
7439-93-2

lithium

lithium bis(trimethylsilyl)amide diethyl etherate
18400-61-8

lithium bis(trimethylsilyl)amide diethyl etherate

A

bis[bis(trimethylsilyl)methyl]germanium(II) dimer
62487-23-4

bis[bis(trimethylsilyl)methyl]germanium(II) dimer

B

lithium hexamethyldisilazane
4039-32-1

lithium hexamethyldisilazane

Conditions
ConditionsYield
In diethyl ether byproducts: LiCl; dry Ar-atmosphere; dropwise addn. of Li-reagent (prepd. from (Me3Si)2CH2Cl and Li-powder by refluxing for 24 h and filtration off of LiCl) to soln. of equimolar amt. of Ge-amide (prepd. from GeCl2 and Li-amide) at 0°C; removal of volatiles (0°C, 0.01 Torr), extn. into hexane, repeated crystn.; product mixt. not sepd.;
cesium bis(trimethylsilyl)amide

cesium bis(trimethylsilyl)amide

lithium hexamethyldisilazane
4039-32-1

lithium hexamethyldisilazane

Conditions
ConditionsYield
Multi-step reaction with 2 steps
1: tetrahydrofuran
2: tetrahydrofuran
View Scheme
2,3-benzofluorene lithium salt

2,3-benzofluorene lithium salt

1,1,1,3,3,3-hexamethyl-disilazane
999-97-3

1,1,1,3,3,3-hexamethyl-disilazane

A

2,3-benzofluorene
243-17-4

2,3-benzofluorene

B

lithium hexamethyldisilazane
4039-32-1

lithium hexamethyldisilazane

Conditions
ConditionsYield
In tetrahydrofuran Equilibrium constant; Concentration;
n-butyllithium
109-72-8, 29786-93-4

n-butyllithium

hexamethyldisilazan
72525-60-1

hexamethyldisilazan

lithium hexamethyldisilazane
4039-32-1

lithium hexamethyldisilazane

Conditions
ConditionsYield
In 1,2-dimethoxyethane; hexane
trans-but-2-enyl chloride
4894-61-5

trans-but-2-enyl chloride

lithium hexamethyldisilazane
4039-32-1

lithium hexamethyldisilazane

2-((E)-But-2-enyl)-1,1,1,3,3,3-hexamethyl-disilazane
89333-64-2

2-((E)-But-2-enyl)-1,1,1,3,3,3-hexamethyl-disilazane

Conditions
ConditionsYield
With silver(I) iodide In tetrahydrofuran for 1.5h; Heating;100%
2-Chlor-4,4,5,5-tetrakis(trifluormethyl)-1,3,2λ3-dioxaphospholan
70311-64-7

2-Chlor-4,4,5,5-tetrakis(trifluormethyl)-1,3,2λ3-dioxaphospholan

lithium hexamethyldisilazane
4039-32-1

lithium hexamethyldisilazane

2-Bis(trimethylsilyl)amino-4,4,5,5-tetrakis(trifluormethyl)-1,3,2λ3-dioxaphospholan
79824-04-7

2-Bis(trimethylsilyl)amino-4,4,5,5-tetrakis(trifluormethyl)-1,3,2λ3-dioxaphospholan

Conditions
ConditionsYield
at 25℃; for 24h;100%
m-iodobenzaldehyde
696-41-3

m-iodobenzaldehyde

lithium hexamethyldisilazane
4039-32-1

lithium hexamethyldisilazane

[1-(3-Iodo-phenyl)-meth-(E)-ylidene]-trimethylsilanyl-amine
253327-53-6

[1-(3-Iodo-phenyl)-meth-(E)-ylidene]-trimethylsilanyl-amine

Conditions
ConditionsYield
In tetrahydrofuran Substitution;100%
lithium hexamethyldisilazane
4039-32-1

lithium hexamethyldisilazane

(3aS,4S,6S,7aR)-2-[(1S)-1-chloro-3-methylbutyl]-3a,5,5-trimethylhexahydro-4,6-methano-1,3,2-benzodioxaborole
85167-14-2

(3aS,4S,6S,7aR)-2-[(1S)-1-chloro-3-methylbutyl]-3a,5,5-trimethylhexahydro-4,6-methano-1,3,2-benzodioxaborole

1,1,1-trimethyl-N-{(1R)-3-methyl-1-[(3aS,4S,6S,7aR)-3a,5,5-trimethylhexahydro-4,6-methano-1,3,2-benzodioxaborol-2-yl]butyl}-N-(trimethylsilyl)silanamine
514820-48-5

1,1,1-trimethyl-N-{(1R)-3-methyl-1-[(3aS,4S,6S,7aR)-3a,5,5-trimethylhexahydro-4,6-methano-1,3,2-benzodioxaborol-2-yl]butyl}-N-(trimethylsilyl)silanamine

Conditions
ConditionsYield
In tetrahydrofuran at -78 - 20℃;100%
In tetrahydrofuran at -78 - 20℃;100%
In tetrahydrofuran at -40℃; for 1h; Inert atmosphere;97.7%
2,5-di-tert-butyl-7-methyl-phenanthridinium; trifluoro-methanesulfonate

2,5-di-tert-butyl-7-methyl-phenanthridinium; trifluoro-methanesulfonate

lithium hexamethyldisilazane
4039-32-1

lithium hexamethyldisilazane

2,5-di-tert-butyl-6-(1,1,1,3,3,3-hexamethyl-disilazan-2-yl)-7-methyl-5,6-dihydro-phenanthridine

2,5-di-tert-butyl-6-(1,1,1,3,3,3-hexamethyl-disilazan-2-yl)-7-methyl-5,6-dihydro-phenanthridine

Conditions
ConditionsYield
In tetrahydrofuran-d8 at -78℃;100%
(+)-pinanediol 1-chloro-3-methylbutane-1-boronate

(+)-pinanediol 1-chloro-3-methylbutane-1-boronate

lithium hexamethyldisilazane
4039-32-1

lithium hexamethyldisilazane

N,N-bis(trimethylsilyl)-(1R)-1-[(3aS,4S,6S,7aR)-hexahydro-3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl]-3-methylbutylamine

N,N-bis(trimethylsilyl)-(1R)-1-[(3aS,4S,6S,7aR)-hexahydro-3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl]-3-methylbutylamine

Conditions
ConditionsYield
In tetrahydrofuran at -78 - 20℃;100%
In tetrahydrofuran at -78 - 20℃; Inert atmosphere;
C33H23BClF15GeN2O

C33H23BClF15GeN2O

lithium hexamethyldisilazane
4039-32-1

lithium hexamethyldisilazane

C39H41BF15GeN3OSi2

C39H41BF15GeN3OSi2

Conditions
ConditionsYield
In toluene at 0 - 20℃; for 12h;100%
(S)-1-chloro-2,2-d2-3-methylbutylboronic acid-(+)-pinanediol ester

(S)-1-chloro-2,2-d2-3-methylbutylboronic acid-(+)-pinanediol ester

lithium hexamethyldisilazane
4039-32-1

lithium hexamethyldisilazane

(R)-1-(hexamethyldisilanyl)amino-2,2-d2-3-methylbutylboronic acid pinanediol ester

(R)-1-(hexamethyldisilanyl)amino-2,2-d2-3-methylbutylboronic acid pinanediol ester

Conditions
ConditionsYield
In tetrahydrofuran at -40 - 20℃; for 2h; Inert atmosphere;100%
(S)-1-chloro-1-d1-2,2-d2-3-methylbutylboronic acid-(+)-pinanediol ester

(S)-1-chloro-1-d1-2,2-d2-3-methylbutylboronic acid-(+)-pinanediol ester

lithium hexamethyldisilazane
4039-32-1

lithium hexamethyldisilazane

(R)-1-(hexamethyldisilanyl)amino-1-d1-2,2-d2-3-methylbutylboronic acid pinanediol ester

(R)-1-(hexamethyldisilanyl)amino-1-d1-2,2-d2-3-methylbutylboronic acid pinanediol ester

Conditions
ConditionsYield
In tetrahydrofuran at -40 - 20℃; for 2h; Inert atmosphere;100%
H2[bis(diisopropylphenylbenzimidazol-2-ylidene)phenyl]Fe(II)Cl3

H2[bis(diisopropylphenylbenzimidazol-2-ylidene)phenyl]Fe(II)Cl3

lithium hexamethyldisilazane
4039-32-1

lithium hexamethyldisilazane

trimethylphosphane
594-09-2

trimethylphosphane

(bis(diisopropylphenylbenzimidazol-2-ylidene)phenyl)Fe(II)H(PMe3)(N2)

(bis(diisopropylphenylbenzimidazol-2-ylidene)phenyl)Fe(II)H(PMe3)(N2)

Conditions
ConditionsYield
With potassium graphite In tetrahydrofuran; toluene at 20℃;100%
2-bromo-3-methylphenol
22061-78-5

2-bromo-3-methylphenol

lithium hexamethyldisilazane
4039-32-1

lithium hexamethyldisilazane

3-methyl-2-(trimethylsilyl)phenol

3-methyl-2-(trimethylsilyl)phenol

Conditions
ConditionsYield
Stage #1: 2-bromo-3-methylphenol; lithium hexamethyldisilazane In tetrahydrofuran at 20℃; for 1h; Inert atmosphere;
Stage #2: With n-butyllithium In tetrahydrofuran; hexane at -78℃; for 1h; Inert atmosphere;
100%
bis(1,5-cyclooctadiene)diiridium(I) dichloride
12112-67-3

bis(1,5-cyclooctadiene)diiridium(I) dichloride

1,1'-(3,6-di-tert-butyl-9H-carbazol-1,8-diyl)bis(3-but-3-enyl-1H-imidazolium) dibromide

1,1'-(3,6-di-tert-butyl-9H-carbazol-1,8-diyl)bis(3-but-3-enyl-1H-imidazolium) dibromide

lithium hexamethyldisilazane
4039-32-1

lithium hexamethyldisilazane

C34H40IrN5*2LiBr*LiCl

C34H40IrN5*2LiBr*LiCl

Conditions
ConditionsYield
In tetrahydrofuran at 20℃; Inert atmosphere; Schlenk technique;100%
2-hydroxy-2-methylpropanenitrile
75-86-5

2-hydroxy-2-methylpropanenitrile

lithium hexamethyldisilazane
4039-32-1

lithium hexamethyldisilazane

lithium cyanide
788104-34-7, 25733-05-5

lithium cyanide

Conditions
ConditionsYield
In tetrahydrofuran addn. of lithium compd. to a soln. of cyanohydrin in THF at 0°C, stirring for 30 min; evapn.;99%
bis(bis(trimethylsilyl)amido)zinc(II)

bis(bis(trimethylsilyl)amido)zinc(II)

lithium hexamethyldisilazane
4039-32-1

lithium hexamethyldisilazane

lithium tris{bis(trimethylsilyl)amido}zincate*4 THF

lithium tris{bis(trimethylsilyl)amido}zincate*4 THF

Conditions
ConditionsYield
With tetrahydrofuran In tetrahydrofuran stirring under Ar, room temp., 2h; evapn.; elem. anal.;99%
indium chloride

indium chloride

lithium hexamethyldisilazane
4039-32-1

lithium hexamethyldisilazane

indium(I) bis(trimethylsilyl)amide

indium(I) bis(trimethylsilyl)amide

Conditions
ConditionsYield
In tetrahydrofuran byproducts: LiCl; under dry Ar or N2, Li-compd. in THF was added to THF soln. of InCl at -78 °C, warming to 25 °C; LiCl was filtered off, volatiles were removed in vac.;99%
[(η5-pentamethylcyclopentadienyl)Ta(N-tert-butyl)(CH3)Cl]
291538-02-8

[(η5-pentamethylcyclopentadienyl)Ta(N-tert-butyl)(CH3)Cl]

lithium hexamethyldisilazane
4039-32-1

lithium hexamethyldisilazane

[(η5-pentamethylcyclopentadienyl)Ta(N-tert-butyl)(CH3)(N(Si(CH3)3)2)]

[(η5-pentamethylcyclopentadienyl)Ta(N-tert-butyl)(CH3)(N(Si(CH3)3)2)]

Conditions
ConditionsYield
In benzene-d6 byproducts: LiCl; C6D6 added in NMR tube to solid mixture under Ar, at 90°C for 24 h; not isolated, identified by NMR;99%
Salen((t)Bu)AlCl
182315-48-6

Salen((t)Bu)AlCl

lithium hexamethyldisilazane
4039-32-1

lithium hexamethyldisilazane

(((CH3)3Si)2N)Al((CH2NCHC6H2(C(CH3)3)2O)2)
182315-59-9

(((CH3)3Si)2N)Al((CH2NCHC6H2(C(CH3)3)2O)2)

Conditions
ConditionsYield
In toluene stirring (35°C, 48 h); filtering, evapn. (reduced pressure); elem. anal.;99%
TaCl2(dimethylamide)3
224638-03-3

TaCl2(dimethylamide)3

lithium hexamethyldisilazane
4039-32-1

lithium hexamethyldisilazane

((CH3)2N)3TaCl(N(Si(CH3)3)2)
652161-03-0

((CH3)2N)3TaCl(N(Si(CH3)3)2)

Conditions
ConditionsYield
In pentane byproducts: LiCl; under N2 atm. (Me2N)3TaCl2 was mixed with LiN(SiMe3)2 (1 : 1) and pentane was added at -50°C, react. mixt, was allowed to warm to room temp. and stirred overnight; soln. was filtered, volatiles were removed in vacuo; elem. anal.;99%
4,4'-diisopropyl-1,1'-dimethoxy-1,6,1',6'-tetrahydro-[2,2']biborininyl

4,4'-diisopropyl-1,1'-dimethoxy-1,6,1',6'-tetrahydro-[2,2']biborininyl

lithium hexamethyldisilazane
4039-32-1

lithium hexamethyldisilazane

2Li(1+)*((CH3)2CHC5H3BOCH3)2(2-)=Li2((CH3)2CHC5H3BOCH3)2

2Li(1+)*((CH3)2CHC5H3BOCH3)2(2-)=Li2((CH3)2CHC5H3BOCH3)2

Conditions
ConditionsYield
In tetrahydrofuran addn. of LiN(TMS)2 in THF to a soln. diborabiphenyl derivative in THF atroom temp. under stiring, stirring for 1 h at room temp.; removal of volatiles under vac.,;99%
3-(1,3-benzoxazol-2-yl)naphthalen-2-ol
14967-45-4

3-(1,3-benzoxazol-2-yl)naphthalen-2-ol

tris(bistrimethylsilylamine)scandium(III)

tris(bistrimethylsilylamine)scandium(III)

lithium hexamethyldisilazane
4039-32-1

lithium hexamethyldisilazane

Sc(3+)*Li(1+)*4C17H10NO2(1-)

Sc(3+)*Li(1+)*4C17H10NO2(1-)

Conditions
ConditionsYield
In 1,2-dimethoxyethane at 70℃; for 4h;99%

4039-32-1Relevant articles and documents

Synthesis of the carbon framework of scholarisine a by intramolecular oxidative coupling

Watanabe, Tsugunori,Kato, Nobuki,Umezawa, Naoki,Higuchi, Tsunehiko

, p. 4255 - 4261 (2013)

Scholarisine A, isolated from the leaves of Alstonia scholaris, is a monoterpene indole alkaloid with an unprecedented cage-like structure. In this paper, preparation of the distinctive cage-like core skeleton of scholarisine A is described. The key feature of this synthetic strategy is an intramolecular oxidative coupling reaction at the late stage to construct a 10-oxa-tricyclo[5.3.1.03, 8]undecan-9-one structure fused with indolenine. Intramolecular oxidative coupling by using N-iodosuccinimide gave the carbon framework of scholarisine A in moderate yield, which is the first example of intramolecular oxidative-coupling reaction between non-activated enolate and indole. This study lays the foundation for continued investigations towards the total synthesis of scholarisine A. Copyright

The synthesis of pentadienylium salts via reactions of (5-ethoxy-1,5-diaryl-2,4-pentadienylidene)ethyloxonium perchlorate with hydrazines

Riviere, Francois,Romanenko, Vadim D.,Mazieres, Marie-Rose,Sanchez, Michel,Wolf, Jean-Gerard

, p. 6717 - 6720 (1996)

Reaction of the readily available (5-ethoxy-1,5-diaryl-2,4-pentadienylidene)ethyloxonium perchlorate 1 with hydrazines, R2NNH2 or RNHNH2, provides a simple and efficient synthesis of previously unknown (5-ethoxy-1,5-diaryl-2,4-pentadienylidene)hydrazinium salts 2a-d. Application of this method to the synthesis of the highly conjugated pentadienylium salt from terephthalic dihydrazide is reported.

Synthesis and grafting of CAN-derived tetravalent cerium alkoxide silylamide precursors onto mesoporous silica MCM-41

Crozier, Alan R.,Schaedle, Christoph,Maichle-Moessmer, Caecilia,Toernroos, Karl W.,Anwander, Reiner

, p. 5491 - 5499 (2013)

The heteroleptic tetravalent cerium complex [Ce(OiPr) 3{N(SiMe3)2}]2 was synthesised by treating ceric ammonium nitrate (CAN) sequentially with sodium isopropoxide and lithium bis(trimethylsilyl)amide in THF. The trivalent ate complex [Ce(OiPr)2{N(SiMe3)2]2}][Li(thf) 2] was also isolated from these reaction mixtures. A transsilylamination reaction of [Ce(OiPr)3{N(SiMe3) 2}]2 with tetramethyldisilazane produced a considerable amount of homoleptic Ce[N(SiHMe2)2]4. The polymeric complex [Li2Ce2(OiPr)10(1,4-dioxane)] n was isolated as an additional ligand redistribution product. When tetravalent complexes Ce[N(SiHMe2)2]4, Ce[N(SiMe3)2]3Cl and Cp3CeCl were allowed to react with samples of periodic mesoporous silica MCM-41, Ce(iv) hybrid materials were produced. All hybrid materials were characterised via N2 physisorption, elemental analysis and DRIFT spectroscopy.

Synthesis and structural elucidation of solvent-free and solvated lithium dimethyl (HMDS) zincates

Armstrong, David R.,Herd, Emma,Graham, David V.,Hevia, Eva,Kennedy, Alan R.,Clegg, William,Russo, Luca

, p. 1323 - 1330 (2008)

Using a co-complexation methodology the unsolvated lithium zincate [LiZn(HMDS)Me2] (4, HMDS = 1,1,1,3,3,3-hexamethyldisilazide) was prepared by reaction of an equimolar amount of LiHMDS with Me2Zn in a non-polar toluene-hexane solvent mixture. X-Ray crystallographic studies reveal that the asymmetric unit of 4 has a dinuclear arrangement, based on a planar LiNZnC four-membered ring. As a result of intermolecular interactions between the lithium centre of one asymmetric unit and a terminal methyl group of another, 4 presents a polymeric chain array in the solid state. DFT calculations revealed that the formation of the polymer is the driving force for the success of co-complexation of LiHMDS and Me2Zn to yield the unsolvated zincate 4. The reaction of 4 with PMDETA (N,N,N′,N″,N″- pentamethyldiethylenetriamine) afforded the new solvated zincate [(PMDETA)Li(μ-Me)Zn(HMDS)Me] (5). X-Ray crystallographic studies show that the asymmetric unit of 5 consists of an open, dinuclear LiCZnC arrangement rather than a closed cyclic one, in which the HMDS ligand unusually occupies a terminal position on Zn. DFT computational studies showed that the structure found for 5 was energetically preferred to the expected HMDS-bridging isomer due to the steric hindrance imposed by the tridentate PMDETA ligand. The reaction of 4 with the neutral nitrogen donors 4-tert-butylpyridine and tert-butylcyanide afforded the homometallic compounds [(tBu-pyr)Li(HMDS)] (6) and [(tBuCN)Li(HMDS)] (7) respectively as a result of disproportionation reactions. Compounds 6 and 7 were characterized by NMR (1H, 13C and 7Li) spectroscopy. The Royal Society of Chemistry.

A trigonal-pyramidal Erbium(III) single-molecule magnet

Brown, Andrew J.,Pinkowicz, Dawid,Saber, Mohamed R.,Dunbar, Kim R.

, p. 5864 - 5868 (2015)

Given the recent advent of mononuclear single-molecule magnets (SMMs), a rational approach based on lanthanides with axially elongated f-electron charge cloud (prolate) has only recently received attention. We report herein a new SMM, [Li(THF)4[Er{N(SiMe3)2}3Cl] 2 THF, which exhibits slow relaxation of the magnetization under zero dc field with an effective barrier to the reversal of magnetization (ΔEeff/kB=63.3 K) and magnetic hysteresis up to 3 K at a magnetic field sweep rate of 34.6 Oe s-1. This work questions the theory that oblate or prolate lanthanides must be stabilized with the appropriate ligand framework in order for SMM behavior to be favored.

An Efficient Directed Claisen Reaction Allows for Rapid Construction of 5,6-Disubstituted 1,3-Dioxin-4-ones

Zhang, Ziyang,Kitamura, Yoshiaki,Myers, Andrew G.

, p. 2709 - 2712 (2015)

An efficient directed Claisen reaction between tert-butyl propionate and phenyl propionate is described. This enables a practical synthesis of 6-ethyl-2,2,5-trimethyl-4H-1,3-dioxin-4-one and thereby (Z)-[(4-ethylidene-2,2,5-trimethyl-4H-1,3-dioxin-6-yl)oxy]trimethylsilane, a key building block in our synthesis of macrolide antibiotics. The three-step route elaborated for the preparation of the latter substance requires no chromatography and is amenable to large-scale synthesis.

NMR spectroscopic study of the adduct formation and reactivity of homoleptic rare earth amides with alkali metal benzyl compounds, and the crystal structures of [Li(TMEDA)2][Nd{N(SiMe3)2}3(CH2Ph)] and [{Li(TMP)}2{Li(Ph)}]2

Rachor, Simon G.,Cleaves, Peter A.,Robertson, Stuart D.,Mansell, Stephen M.

, p. 101 - 109 (2018)

An NMR spectroscopic study has been conducted into the reactivity of alkali metal benzyls [M(CH2Ph)], (M = Li, Na, K) with lanthanide tris(amide) complexes [Ln(N″)3] (Ln = Y, Ce, Nd; N″ = N(SiMe3)2) and [Ce(TMP)3] (TMP = 2,2,6,6-tetramethylpiperidide). It was found that for [Ln(N″)3], benzyl adducts [M][Ln(N″)3(CH2Ph)] were initially formed, and the molecular structure for M = Li(TMEDA)2 and Ln = Nd was determined revealing a distorted tetrahedral [Nd(N″)3(CH2Ph)] anion. In all cases, these adduct complexes were unstable, intramolecularly deprotonating a methyl arm of a N″ ligand via benzyl basicity and eliminating toluene to prepare cyclometallated complexes of the form [M][Ln(N″)2{κ2-CH2Si(Me)2N(SiMe3)}]. In parallel studies, reactions of [Li(Ph)] with [Ln(N″)3] (Ln = Ce, Nd) afforded [Li(N″)], whilst for (Ln = Y) adduct formation was observed. [Ce(TMP)3] did not generate any characterisable bimetallic adducts. The reaction of [Li(Ph)] with [Li(TMP)] afforded the hexanuclear [{Li(TMP)}2{Li(μ-Ph)}]2, which features lithium in three different coordination environments.

TITRATION OF ORGANIC COMPOUNDS AS VERY WEAK ACIDS WITH LITHIUM SILANAMIDE

Clyde, Dale D.

, p. 1308 - 1310 (1980)

Numerous organic compounds, such as alcohols, acetophenones, esters, anilides, carbamates, and lactams, can be titrated as very weak acids in tetrahydrofuran.End points were determined by potentiometry and by color change of N-phenyl-p-aminoazobenzene.Relative percent errors for the determination of approximately 1.00-mmol amounts of sample generally ranged from 2 to 6percent.Examples of compounds which did not react quantitatively with the lithium silylamide reagent were benzophenone, benzylbenzoate, and N-phenylbenzylamine.

Accessing Photoredox Transformations with an Iron(III) Photosensitizer and Green Light

Aydogan, Akin,Bangle, Rachel E.,Cadranel, Alejandro,Turlington, Michael D.,Conroy, Daniel T.,Cau?t, Emilie,Singleton, Michael L.,Meyer, Gerald J.,Sampaio, Renato N.,Elias, Benjamin,Troian-Gautier, Ludovic

supporting information, p. 15661 - 15673 (2021/10/01)

Efficient excited-state electron transfer between an iron(III) photosensitizer and organic electron donors was realized with green light irradiation. This advance was enabled by the use of the previously reported iron photosensitizer, [Fe(phtmeimb)2]+ (phtmeimb = {phenyl[tris(3-methyl-imidazolin-2-ylidene)]borate}, that exhibited long-lived and luminescent ligand-to-metal charge-transfer (LMCT) excited states. A benchmark dehalogenation reaction was investigated with yields that exceed 90% and an enhanced stability relative to the prototypical photosensitizer [Ru(bpy)3]2+. The initial catalytic step is electron transfer from an amine to the photoexcited iron sensitizer, which is shown to occur with a large cage-escape yield. For LMCT excited states, this reductive electron transfer is vectorial and may be a general advantage of Fe(III) photosensitizers. In-depth time-resolved spectroscopic methods, including transient absorption characterization from the ultraviolet to the infrared regions, provided a quantitative description of the catalytic mechanism with associated rate constants and yields.

Designing Stability into Thermally Reactive Plumbylenes

Ba?i?, Goran,Zanders, David,Mallick, Bert,Devi, Anjana,Barry, Seán T.

, p. 8218 - 8226 (2018/07/25)

Lead analogues of N-heterocyclic carbenes (NHPbs) are the least understood members of this increasingly important class of compounds. Here we report the design, preparation, isolation, structure, volatility, and decomposition pathways of a novel aliphatic NHPb: rac-N 2,N 3-di-tert-butylbutane-2,3-diamido lead(II) (1Pb). The large steric bulk of the tert-butylamido moieties and rac-butane backbone successfully hinder redox decomposition pathways observed for diamidoethylene and -ethane backbone analogues, pushing the onset of thermal decomposition from below 0 °C to above 150 °C. With an exceptionally high vapor pressure of 1 Torr at 94 ± 2 °C and excellent thermal stability among Pb(II) complexes, 1Pb is a promising precursor for the chemical vapor deposition (CVD) and atomic layer deposition (ALD) of functional lead-containing materials.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 4039-32-1