E
Y. Liu et al.
Letter
Synlett
II
(4) For examples of transition-metal-catalyzed C–H functionaliza-
tions, see: (a) Ackermann, L. Chem. Rev. 2011, 111, 1315.
(b) Arockiam, P. B.; Bruneau, C.; Dixneuf, P. Chem. Rev. 2012,
112, 5879. (c) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q.
Angew. Chem. Int. Ed. 2009, 48, 5094. (d) Engle, K. M.; Mei, T.-S.;
Wasa, M.; Yu, J.-Q. Acc. Chem. Res. 2012, 45, 788. (e) Davies, H.
M. L.; Morton, D. J. Org. Chem. 2016, 81, 343. (f) Yoshino, T.;
Matsunaga, S. Adv. Synth. Catal. 2017, 359, 1245. (g) Leitch, J. A.;
Wilson, P. B.; McMullin, C. L.; Mahon, M. F.; Bhonoah, Y.;
Williams, I. H.; Frost, C. G. ACS Catal. 2016, 6, 5520. (h) Leitch, J.
A.; Cook, H. P.; Bhonoah, Y.; Frost, C. G. J. Org. Chem. 2016, 81,
10081. (i) Ma, W.; Dong, H.; Wang, D.; Ackermann, L. Adv. Synth.
Catal. 2017, 359, 966. (j) Yamaguchi, J.; Yamaguchi, A. D.; Itami,
K. Angew. Chem. Int. Ed. 2012, 51, 8960. (k) Brown, J. A.;
Cochrane, A. R.; Irvine, S.; Kerr, W. J.; Mondal, B.; Parkinson, J.
A.; Paterson, L. C.; Reid, M.; Tuttle, T.; Andersson, S.; Nilsson, G.
N. Adv. Synth. Catal. 2014, 356, 3551. (l) Sandtorv, A. H. Adv.
Synth. Catal. 2015, 357, 2403. (m) Sambiagio, C.; Schönbauer, D.;
Blieck, R.; Dao-Huy, T.; Pototschnig, G.; Schaaf, P.; Wiesinger, T.;
Zia, M. F.; Wencel-Delord, J.; Besset, T.; Maes, B. U. W.;
Schnürch, M. Chem. Soc. Rev. 2018, 47, 6603.
(5) (a) Netherton, M. R.; Dai, C.; Neuschütz, K.; Fu, G. C. J. Am. Chem.
Soc. 2001, 123, 10099. (b) Littke, A. F.; Fu, G. C. Angew. Chem. Int.
Ed. 2002, 41, 4176. (c) Bellina, F.; Cauteruccio, S.; Rossi, R. Eur.
J. Org. Chem. 2006, 1379. (d) Touré, B. B.; Lane, B. S.; Sames, D.
Org. Lett. 2006, 8, 1979. (e) Wang, X.; Gribkov, D. V.; Sames, D.
J. Org. Chem. 2007, 72, 1476. (f) Bellina, F.; Calandri, C.;
Cauteruccio, S.; Rossi, R. Tetrahedron 2007, 63, 1970.
(g) Lebrasseur, N.; Larrosa, L. J. Am. Chem. Soc. 2008, 130, 2926.
(h) Joucla, L.; Batail, N.; Djakovitch, L. Adv. Synth. Catal. 2010,
352, 2929. (i) Lu, G.-p.; Chun, C. Synlett 2012, 23, 2992.
(j) Huang, Y.-B.; Shen, M.; Wang, X.; Huang, P.; Chen, R.; Lin, Z.-
J.; Cao, R. J. Catal. 2016, 333, 1. (k) Das, D.; Bhutia, Z. T.;
Chatterjee, A.; Banerjee, M. J. Org. Chem. 2019, 84, 10764.
(6) (a) Deprez, N. R.; Kalyani, D.; Krause, A.; Sanford, M. S. J. Am.
Chem. Soc. 2006, 128, 4972. (b) Malmgren, J.; Nagendiran, A.;
Tai, C. W.; Bäckvall, J. E.; Olofsson, B. Chem. Eur. J. 2014, 20,
13531. (c) Estevan, F.; Ibáñez, S.; Ofori, A.; Hirva, P.; Sanaú, M.;
Úbeda, M. A. Eur. J. Inorg. Chem. 2015, 2822. (d) Duan, L.; Fu, R.;
Zhang, B.; Shi, W.; Chen, S.; Wan, Y. ACS Catal. 2016, 6, 1062.
(7) (a) Yang, S.-D.; Sun, C.-L.; Fang, Z.; Li, B.-J.; Li, Y.-Z.; Shi, Z.-J.
Angew. Chem. Int. Ed. 2008, 47, 1473. (b) Zhao, J.; Zhang, Y.;
Cheng, K. J. Org. Chem. 2008, 73, 7428. (c) Williams, T. J.; Reay, A.
J.; Whitwood, A. C.; Fairlamb, I. J. S. Chem. Commun. 2014, 50,
3052. (d) Zhang, L.; Li, P.; Liu, C.; Yang, J.; Wang, M.; Wang, L.
Catal. Sci. Technol. 2014, 4, 1979.
L2PdX2
O2
HX
2a
L2Pd0
Ph
II
Ph
X
N
L2Pd
13
3a
8
1a
reductive
elimination
L
L
H
II
Pd
II
Ph
Pd PhL2
N
N
9
12
electrophilic
substitution
II
Pd
PhL2
H
H
H
PdII PhL2
N
N
10
migration
11
Scheme 2 Proposed mechanism for the reaction
rect 2-arylation of indoles. The reaction mechanism and
further application of this new arylation method are being
actively explored in our group.
Funding Information
We are grateful for the financial support of the National Natural Sci-
ence Foundation of China (21902126), China Postdoctoral Science
Foundation (2019M663947XB), and the 111 Project (B14041).
C
h
i
n
a
P
ostd
o
ctoralS
c
i
e
n
c
e
F
o
u
n
d
ati
o
n
(2
0
1
9
M
6
6
3
9
4
7
X
B)Nati
o
n
a
lNaturalS
c
i
e
n
c
e
F
o
u
n
d
ati
o
n
of
C
h
i
n
a
(2
1
9
0
2
1
2
6)
Supporting Information
Supporting information for this article is available online at
S
u
p
p
orti
n
gInformati
o
n
S
u
p
p
orit
n
gInformati
o
n
References and Notes
(1) (a) Marcin, L. R.; Denhart, D. J.; Mattson, R. J. Org. Lett. 2005, 7,
2651. (b) Khdour, O.; Ouyang, A.; Skibo, E. B. J. Org. Chem. 2006,
71, 5855. (c) Venkatesh, C.; Ila, H.; Junjappa, H.; Mathur, S.;
Huch, V. J. Org. Chem. 2002, 67, 9477. (d) Cacchi, S.; Fabrizi, G.
Chem. Rev. 2005, 105, 2873.
(2) (a) Daly, S.; Hayden, K.; Malik, I.; Porch, N.; Tang, H.; Rogelj, S.;
Frolova, L. V.; Lepthien, K.; Kornienko, A.; Magedov, I. V. Bioorg.
Med. Chem. Lett. 2011, 21, 4720. (b) Kaushik, N. K.; Kaushik, N.;
Attri, P.; Kumar, N.; Kim, C. H.; Verma, A. K.; Choi, E. H. Mole-
cules 2013, 18, 6620. (c) Rohini, R.; Reddy, P. M.; Shanker, K.;
Hu, A.; Ravinder, V. Eur. J. Med. Chem. 2010, 45, 1200. (d) Shi,
W.; Marcus, S. L.; Lowary, T. L. Bioorg. Med. Chem. 2011, 19, 603.
(e) Talele, T. T. J. Med. Chem. 2016, 59, 8712. (f) Chadha, N.;
Silakari, O. Eur. J. Med. Chem. 2017, 134, 159.
(3) (a) Liu, Y.; Gribble, G. W. Tetrahedron Lett. 2000, 41, 8717.
(b) Barluenga, J.; Alejandro Fernández, M.; Aznar, F.; Valdés, C.
Chem. Eur. J. 2005, 11, 2276. (c) Fang, Y.-Q.; Lautens, M. Org. Lett.
2005, 7, 3549. (d) Li, P.; Wang, L.; Wang, M.; You, F. Eur. J. Org.
Chem. 2008, 5946. (e) Alsabeh, P. G.; Lundgren, R. J.; Longobardi,
L. E.; Stradiotto, M. Chem. Commun. 2011, 47, 6936.
(8) Liang, Z.; Yao, B.; Zhang, Y. Org. Lett. 2010, 12, 3185.
(9) Wu, M.; Luo, J.; Xiao, F.; Zhang, S.; Deng, G.-J.; Luo, H.-A. Adv.
Synth. Catal. 2012, 354, 335.
(10) Liu, C.; Ding, L.; Guo, G.; Liu, W.; Yang, F.-L. Org. Biomol. Chem.
2016, 14, 2824.
(11) (a) Liu, C.; Miao, T.; Zhang, L.; Li, P.; Zhang, Y.; Wang, L. Chem.
Asian J. 2014, 9, 2584. (b) Liu, Y.; Ma, X.; Wu, G.; Liu, Z.; Yang, X.;
Wang, B.; Liu, C.; Zhang, Y.; Huang, Y. New J. Chem. 2019, 43,
9255.
(12) Stuart, D. R.; Villemure, E.; Fagnou, K. J. Am. Chem. Soc. 2007,
129, 12072.
(13) Chang, S.; Dong, L. L.; Song, H. Q.; Feng, B. Org. Biomol. Chem.
2018, 16, 3282.
(14) Tiwari, V. K.; Kamal, N.; Kapur, M. Org. Lett. 2015, 17, 1766.
(15) (a) Wang, X.; Lane, B. S.; Sames, D. J. Am. Chem. Soc. 2005, 127,
4996. (b) Vogler, T.; Studer, A. Org. Lett. 2008, 10, 129. (c) Zheng,
J.; Zhang, Y.; Cui, S. Org. Lett. 2014, 16, 3560.
© 2020. Thieme. All rights reserved. Synlett 2020, 31, A–F