LETTER
Generation and Reactivity of Oxazolidinone Derived N-Acyl Radicals
1659
Table 2 Products and Yields For Reactions of 14.
(5) (a) Evans, D. A. Aldrichim. Acta. 1982, 15, 23. (b) Yan, T.-H.;
Tan, C.-W.; Lee, H.-C.; Lo, H.-C.; Hung, T.-Y. J. Am. Chem.
Soc. 1993, 115, 3301, and references cited therein.
(6) (a) Keck, G. E.; Yates, J. B. J. Org. Chem. 1982, 47, 3590.
(b) Keck, G. E.; Yates, J. B. J. Am. Chem. Soc. 1982, 104,
5829. (c) Keck, G. E.; Enholm, E. J.; Yates, J. B.; Wiley, M.
R. Tetrahedron 1985, 41, 4079. (d) Keck, G. E.; Kachensky,
D. F.; Enholm, E. J. J. Org. Chem. 1985, 50, 3590.
(7) Canonne, P.; Bernatchez, M. J. Org. Chem. 1987, 52, 4025.
(8) The stereochemical outcome for the reaction described in
entry 7 of Table 1 suggests a late, product-like transition state
with significant pyramidalization at the radical center,
presumably to minimize steric interactions between the
acyloxazolidinone and OTBS groups.
(9) (a) The stereochemical outcome for the reaction described in
entry 8 of Table 1 may be rationalized by an extension of
stereochemical models set forth independently by Hart9b,c and
by Porter, Giese, and Curran:9d
The reactions described herein extend the known chemis-
try of acyl radicals to bimolecular processes utilizing syn-
thetically versatile N-acyloxazolidinones. Reactions with
acyclic enol ethers provide a radical based synthesis of
materials commonly envisioned as "aldol products" via an
alternative bond construction. Further studies on the reac-
tions of such radicals, particularly with respect to investi-
gations of asymmetric methodology, are in progress.12
References and Notes
(1) (a) Curran, D. P. Synthesis 1988, 417-439, 489-513.
(b) Curran, D. P. In Comprehensive Organic Chemistry, Trost,
B., Fleming, I., Eds.; Pergamon: New York; 1992; Vol. 4,
Chapters 4.1 and 4.2. (c) Jasperse, C. P.; Curran, D. P.; Fevig,
T. L. Chem. Rev. 1991, 91, 1237.
(2) (a) Elad, D.; Rokach, J. J. Org. Chem. 1964, 29, 1855.
(b) Curran, D. P.; Liu, H. J. Org. Chem. 1991, 56, 3463.
(c) Bachi, M. D.; Bosch, E.; Denenmark, D.; Girsh, D. J. Org.
Chem. 1992, 57, 6803. (d) Boger, D. L.; Mathvink, R. J. J.
Org. Chem. 1992, 57, 1429. (e) Crich, D.; Chen, C.; Hwang,
J. T.; Yuan, H.; Papadatos, A.; Walter, R. I. J. Am. Chem. Soc.
1994, 116, 8937. (f) Evans, P. A.; Roseman, J. D. Tetrahedron
Lett. 1995, 36, 31.
(b) Hart, D. J.; Huang, H.-C.; Krishnamurthy, R.; Schwartz, T. J.
Am. Chem. Soc. 1989, 111, 7507. (c) Hart, D. J.;
Krishnamurthy, R. J. Org. Chem. 1992, 57, 4457. (d) Porter,
N. A.; Giese, B.; Curran, D. P. Acc. Chem. Res. 1991, 24, 296.
(10) For recent leading references on the use of Lewis acids in free
radical reactions, see: (a) Sibi, M. P.; Ji, J.; J. Org. Chem.
1997, 62, 3800. (b) Guindon, Y.; Rancourt, J. J. Org. Chem.
1998, 63, 6554.
(11) The structural assignment made for these materials is based
upon independent synthesis.
(12) Financial assistance provided by the NIH and by Pfizer, Inc. is
gratefully acknowledged.
(3) (a) Ogura, K.; Kayano, A.; Sumitani, N.; Akazome, M.;
Fujita, M. J. Org. Chem. 1995, 60, 1106. (b) Garner, P. P.;
Cox, P. B.; Klippenstein, S. J. J. Am. Chem. Soc. 1995, 117,
4183. (c) Keck, G. E.; Tafesh, A. M. Synlett 1990, 257.
(4) (a) Nishida, A.; Nishida, M.; Yonemitsu, O. Tetrahedron Lett.
1990, 31, 7035. (b) Keck, G. E.; Kordik, C. P. Tetrahedron
Lett. 1993, 34, 6875.
Article Identifier:
1437-2096,E;1999,0,10,1657,1659,ftx,en;S05199ST.pdf
Synlett 1999, No. 10, 1657–1659 ISSN 0936-5214 © Thieme Stuttgart · New York