COMMUNICATIONS
[12] T. Hayashi, M. Kawatsura, Y. Uozumi, J. Am. Chem. Soc. 1998, 120,
1681 ± 1687.
[13] T. Minami, Y. Okada, T. Otaguro, S. Tawaraya, T. Furuichi, T.
Okauchi, Tetrahedron: Asymmetry 1995, 6, 2469 ± 2474.
[14] Y. Okada, T. Minami, Y. Umezu, S. Nishikawa, R. Mori, Y. Nakayama,
Tetrahedron: Asymmetry 1991, 2, 667 ± 682.
[15] U. Nettekoven, M. Widhalm, P. C. J. Kamer, P. W. N. M. van Leeuwen,
Tetrahedron: Asymmetry 1997, 8, 3185 ± 3188.
[16] B. M. Trost, R. C. Bunt, J. Am. Chem. Soc. 1996, 118, 235 ± 236.
[17] B. M. Trost, R. C. Bunt, Angew. Chem. 1996, 108, 70 ± 73; Angew.
Chem. Int. Ed. Engl. 1996, 35, 99 ± 102.
[18] B. M. Trost, M. G. Organ, G. A. OꢁDoherty, J. Am. Chem. Soc. 1995,
117, 9662 ± 9670.
[19] B. M. Trost, R. C. Bunt, J. Am. Chem. Soc. 1994, 116, 4089 ± 4090.
[20] G. Helmchen, S. Kudis, P. Sennhenn, H. Steinhagen, Pure Appl. Chem.
1997, 69, 513 ± 518.
[21] G. Knühl, P. Sennhenn, G. Helmchen, J. Chem. Soc. Chem. Commun.
1995, 1845 ± 1846.
[22] S. Kudis, G. Helmchen, Angew. Chem. 1998, 110, 3210 ± 3212; Angew.
Chem. Int. Ed. 1998, 37, 3047 ± 3050.
[23] G. Parrinello, J. K. Stille, J. Am. Chem. Soc. 1987, 109, 7122 ± 7127.
[24] M. Hodgson, D. Parker, J. Organomet. Chem. 1987, 325, C27-C30.
[25] K. Tani, K. Suwa, E. Tanigawa, T. Ise, T. Yamagata, Y. Tatsuno, S.
Otsuka, J. Organomet. Chem. 1989, 370, 203 ± 221.
Figure 1. Model of the metal complex with an allyl group attached.
[26] H. Brunner, E. Graf, W. Leitner, K. Wutz, Synthesis 1989, 743 ± 745.
[27] H. Takeda, T. Tachinami, M. Aburatani, H. Takahashi, T. Morimoto,
K. Achiwa, Tetrahedron Lett. 1989, 30, 367 ± 370.
[28] G. J. Dawson, J. M. J. Williams, Tetrahedron: Asymmetry 1995, 6,
2535 ± 2546.
[29] H. Kubota, K. Koga, Tetrahedron Lett. 1994, 35, 6689 ± 6692.
[30] G. L. Baker, S. J. Fritschel, J. R. Stille, J. K. Stille, J. Org. Chem. 1981,
46, 2954 ± 2960.
Experimental Section
Procedure for p-allyl alkylation: The phosphanyldihydrooxazole ligand
was mixed with [{Pd(h3-C3H5)Cl}2] in degassed solvent, followed by
addition of the cyclic allylic acetate. To this mixture a solution containing
dimethyl malonate (3 equiv), tetrabutylammonium fluoride (TBAF)
(3 equiv) and N,O-bis(trimethylsilyl)acetamide (BSA) (3 equiv) was added
slowly through a addition funnel (30 min). After the reaction was complete,
water was added to quench the reaction and the organic solvent was
removed by evaporation. The water layer was then extracted with diethyl
ether twice and the ether solution was washed with saturated NaHCO3,
brine, and dried over Na2SO4. Evaporation of solvent gave a residue that
was chromatographed by using EtOAc/n-hexanes (10/90, v/v) as an eluant
to afford a colorless oil.
The enantiomeric purity was determined by integration of the NMR signals
of the methyl residues on the dimethyl malonate, upon titration with
europium chiral shift reagent [Eu(hfbc)3].
DNA Responds to Ionizing Radiation as an
Insulator, Not as a ªMolecular Wireº**
Michael G. Debije, Michael T. Milano, and
William A. Bernhard*
The ligand with the opposite configuration can be synthesized from d-
hydroxyproline, which is accessible from l-hydroxyproline.[30]
Received: March 4, 1999 [Z13109IE]
German version: Angew. Chem. 1999, 111, 2915 ± 2918
The understanding of electron and hole transfer in DNA is
critical to predicting the biological consequences of exposure
to ionizing radiation. These processes are biologically relevant
since about 50% of the consequential damage is produced by
direct-type events,[1] that is, from one-electron loss (holes) and
one-electron gain directly by the DNA[2] or by fast transfer of
holes and electrons to the DNA from adjacent solvent.[3]
Transfer processes are chemically relevant since the distribu-
Keywords: alkylations ´ asymmetric catalysis ´ palladium ´
P,N ligands
[1] B. M. Trost, D. L. Van Vranken, Chem. Rev. 1996, 96, 395 ± 422.
[2] C. G. Frost, J. Howarth, J. M. J. Williams, Tetrahedron: Asymmetry
1992, 3, 1089 ± 1122.
[3] S. R. Gilbertson, C.-W. Chang, Chem. Commun. 1997, 975 ± 976.
[4] P. von Matt, A. Pfaltz, Angew. Chem. 1993, 105, 614 ± 615; Angew.
Chem. Int. Ed. Engl. 1993, 32, 566 ± 568.
[5] J. Sprinz, M. Kiefer, G. Helmchen, M. Reggelin, G. Huttner, O.
Walter, L. Zsolnai, Tetrahedron Lett. 1994, 35, 1523 ± 1526.
[6] H. Steinhagen, M. Reggelin, G. Helmchen, Angew. Chem. 1997, 109,
2199 ± 2202; Angew. Chem. Int. Ed. Engl. 1997, 36, 2108 ± 2110.
[7] A. Togni, U. Burckhardt, V. Gramlich, P. S. Pregosin, R. Salzmann, J.
Am. Chem. Soc. 1996, 118, 1031 ± 1037.
[8] M. Bovens, A. Togni, L. M. Venanzi, J. Organomet. Chem. 1993, 451,
C28 ± C31.
[9] J. V. Allen, S. J. Coote, G. J. Dawson, C. G. Frost, C. J. Martin, J. M. J.
Williams, J. Chem. Soc. Perkin Trans. 1 1994, 2065 ± 2071.
[10] M. Yamaguchi, T. Shima, T. Yamagishi, M. Hida, Tetrahedron Lett.
1990, 31, 5049 ± 5052.
[*] Prof. W. A. Bernhard, M. G. Debije, M. T. Milano
Department of Biochemistry and Biophysics
University of Rochester
Rochester, NY 14642 (USA)
Fax: (1)716-275-6007
[**] We thank Loren Williams and Gary Hu for providing crystals of
d(CGATCG):anthracycline, Tom Colby and Michael Strickler for
assistance in verifying crystal structures, and Yurii Razskazovskii for
his helpful discussions. The technical assistance of Kermit R. Mercer
was invaluable. The investigation was supported by PHS Grant 2-R01-
CA32546, awarded by the National Cancer Institute, DHHS. The
contents of this paper are solely the responsibility of the authors and
do not necessarily represent the official views of the National Cancer
Institute.
[11] S. R. Gilbertson, C.-W. Chang, J. Org. Chem. 1998, 63, 8424 ± 8431.
2752
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 1999
1433-7851/99/3818-2752 $ 17.50+.50/0
Angew. Chem. Int. Ed. 1999, 38, No. 18