798
M. Shkoor, R. Bayari
Letter
Synlett
(5) Pratap, R.; Ram, V. J. Chem. Rev. 2014, 114, 10476.
O
O
O
O
O
O
O
(6) Singh, H.; Singh, J. V.; Bhagat, K.; Gulati, H. K.; Sanduja, M.;
Kumar, N.; Kinarivala, N.; Sharma, S. Bioorg. Med. Chem. 2019,
27, 3477.
(7) Medina, F. G.; Marrero, J. G.; Macías-Alonso, M.; González, M. C.;
Córdova-Guerrero, I.; Teissier García, A. G.; Osegueda-Robles, S.
Nat. Prod. Rep. 2015, 32, 1472.
EtO
OEt
EtO
OEt
Michael addition
4
A
O
BH+
B:
O
O
OH
OEt
OH
EtO
O
(8) Calcio Gaudino, E.; Tagliapietra, S.; Martina, K.; Palmisano, G.;
Cravotto, G. RSC Adv. 2016, 6, 46394.
O
3a
(9) Wang, Y.; Wang, S.; Chen, B.; Li, M.; Hu, X.; Hu, B.; Jin, L.; Sun,
N.; Shen, Z. Synlett 2020, 31, 261.
(10) Al-Warhi, T.; Sabt, A.; Elkaeed, E. B.; Eldehna, W. M. Bioorg.
Chem. 2020, 103, 104163.
(11) Stefanachi, A.; Leonetti, F.; Pisani, L.; Catto, M.; Carotti, A. Mole-
cules 2018, 23, 250.
(12) Zhang, L.; Xu, Z. Eur. J. Med. Chem. 2019, 181, 111587.
(13) Riveiro, M.; De Kimpe, N.; Moglioni, A.; Vazquez, R.; Monczor,
F.; Shayo, C.; Davio, C. Curr. Med. Chem. 2010, 17, 1325.
(14) Zhu, J.-J.; Jiang, J.-G. Mol. Nutr. Food Res. 2018, 62, 1701073.
(15) Cao, D.; Liu, Z.; Verwilst, P.; Koo, S.; Jangjili, P.; Kim, J. S.; Lin, W.
Chem. Rev. 2019, 119, 10403.
O
B
B:
B:
– H2O
intramolecular Knoevenagel
– EtOH lactonization
OEt
OEt
OH
O
O
O
O
enolization
oxidation
O
O
O
O
5a
O
C
(16) Sun, X.; Liu, T.; Sun, J.; Wang, X. RSC Adv. 2020, 10, 10826.
(17) Tasior, M.; Kim, D.; Singha, S.; Krzeszewski, M.; Ahn, K. H.;
Gryko, D. T. J. Mater. Chem. C 2015, 3, 1421.
Scheme 3 A plausible mechanism for the formation of fluorenone-
fused coumarins 5a
(18) Trenor, S. R.; Shultz, A. R.; Love, B. J.; Long, T. E. Chem. Rev. 2004,
104, 3059.
(19) Miller, M. A.; Day, R. A.; Estabrook, D. A.; Sletten, E. M. Synlett
2020, 31, 450.
(20) Shi, Y.; Gao, S. Tetrahedron 2016, 72, 1717.
(21) Hu, Q.-F.; Zhou, B.; Huang, J.-M.; Gao, X.-M.; Shu, L.-D.; Yang, G.-
Y.; Che, C.-T. J. Nat. Prod. 2013, 76, 292.
(22) Wang, S.; Wen, B.; Wang, N.; Liu, J.; He, L. Arch. Pharm. Res.
2009, 32, 521.
(23) Gao, H.; Wang, S.; Qi, Y.; He, G.; Qiang, B.; Wang, S.; Zhang, H.
Bioorg. Med. Chem. Lett. 2019, 29, 126724.
(24) Pang, X.; Tan, Y.; Tan, C.; Li, W.; Du, N.; Lu, Y.; Jiang, Y. ACS Appl.
Mater. Interfaces 2019, 11, 28246.
In summary, we have developed a new facile and expe-
ditious protocol of the synthesis of substituted fluorenone-
fused coumarins by the base-catalyzed reaction of diethyl
1,3-acetonedicarboxylate with 2-hydroxybenzylidenein-
denediones. This reaction represents the first cyclization of
diethyl 1,3-acetonedicarboxylate with 2-(2-hydroxyben-
zylidene) of 1,3-dicarbonyl compounds. The reaction oper-
ates with many bases and solvents. However, the optimized
conditions required the use of DMAP as a catalyst.
(25) Do, T. T.; Pham, H. D.; Manzhos, S.; Bell, J. M.; Sonar, P. ACS Appl.
Mater. Interfaces 2017, 9, 16967.
Funding Information
(26) Revankar, H. M.; Bukhari, S. N. A.; Kumar, G. B.; Qin, H.-L.;
Stefanachi, A.; Leonetti, F.; Pisani, L.; Catto, M.; Carotti, A.; Ibrar,
A.; Shehzadi, S. A.; Saeed, F.; Khan, I.; Medina, F. G.; Marrero, J.
G.; Macías-Alonso, M.; González, M. C.; Córdova-Guerrero, I.;
Teissier, García. A. G.; Osegueda-Robles, S.; Thakur, A.; Singla, R.;
Jaitak, V.; Borges, F.; Roleira, F.; Milhazes, N.; Santana, L.;
Uriarte, E. Molecules 2018, 23, 250.
(27) Manick, A.-D.; Salgues, B.; Parrain, J.-L.; Zaborova, E.; Fages, F.;
Amatore, M.; Commeiras, L. Org. Lett. 2020, 22, 1894.
(28) Tanaka, K.; Fukawa, N.; Suda, T.; Noguchi, K. Angew. Chem. Int.
Ed. 2009, 48, 5470.
(29) Eiden, F.; Gmeiner, P. Arch. Pharm. (Weinheim, Ger.) 1987, 320,
213.
(30) Poudel, T. N.; Lee, Y. R. Org. Biomol. Chem. 2014, 12, 919.
(31) Masesane, B. I.; Mazimba, O. Bull. Chem. Soc. Ethiop. 2014, 28,
289.
This work was supported by Qatar University (Student Grant, Grant
No. QUST-2-CAS-2019-28).Qtar
U
n
i
versiyt(Q
U
S
T-2-C
A
S-2
0
1
9-28)
Acknowledgment
We thank Central Laboratories Unit and Environmental Science Cen-
ter, Qatar University for their support in compounds analysis.
Supporting Information
Supporting information for this article is available online at
p
p
ortingInformatio
n
Su
p
p
ortingInformatio
n
References and Notes
(32) Shkoor, M.; Su, H.-L.; Ahmed, S.; Hegazy, S. J. Heterocycl. Chem.
2020, 57, 813.
(33) Fatunsin, O.; Iaroshenko, V.; Dudkin, S.; Shkoor, M.; Volochnyuk,
D.; Gevorgyan, A.; Langer, P. Synlett 2010, 1533.
(34) Yu, J.-K.; Chien, H.-W.; Lin, Y.-J.; Karanam, P.; Chen, Y.-H.; Lin,
W. Chem. Commun. 2018, 54, 9921.
(1) Kancherla, S.; Jørgensen, K. B. J. Org. Chem. 2020, 85, 11140.
(2) Ibarra, I. A.; Islas-Jácome, A.; González-Zamora, E. Org. Biomol.
Chem. 2018, 16, 1402.
(3) Singh, G. S.; Desta, Z. Y. Chem. Rev. 2012, 112, 6104.
(4) Kotha, S.; Meshram, M.; Tiwari, A. Chem. Soc. Rev. 2009, 38,
2065.
(35) Pigot, C.; Noirbent, G.; Peralta, S.; Duval, S.; Nechab, M.; Gigmes,
D.; Dumur, F. Helv. Chim. Acta 2019, 102, e1900229.
© 2021. Thieme. All rights reserved. Synlett 2021, 32, 795–799