LETTER
Chem. Incl. Med. Chem. 1987, 26, 180. (k) Morita, Y.;
Diarylhydrazines by Dithionite Reduction
1697
in a ratio of 90:10) gave a solid, which was recrystallized
from EtOH and dried under vacuum. When the azobenzene
precipitated during the hydrolysis, the precipitate was
filtered, washed with H2O on the filter, and dried under
vacuum. The products were characterized by IR, 1H NMR,
and 13C NMR spectroscopy, mass spectrometry, and melting
points (when appropriate), which were compared with
literature data.
Agawa, T.; Kai, Y.; Kanehisa, N.; Kasai, N.; Nomura, E.;
Taniguchi, H. Chem. Lett. 1989, 1349. (l) Noureldin, N. A.;
Bellegarde, J. W. Synthesis 1999, 939. (m) Sander, W.;
Hubert, R.; Kraka, E.; Grafenstein, J.; Cremer, D. Chem.
Eur. J. 2000, 6, 4567. (n) Dinica, R.; Charmantray, F.;
Demeunynck, M.; Dumy, P. Tetrahedron Lett. 2002, 43,
7883. (o) Kornev, K. A.; Zheltov, A. Ya. Russ. J. Gen.
Chem. 2003, 73, 1095. (p) Peng, Y.; Song, G.; Ding, F.
Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem.
2004, 43, 2021. (q) Martin, V. V.; Rothe, A.; Gee, K. R.
Bioorg. Med. Chem. Lett. 2005, 15, 1851. (r) Oniciu, D.;
Bell, R.; McCosar, B.; Bisgaier, C.; Dasseux, J.-L.; Verdijk,
D.; Relou, M.; Smith, D.; Regeling, H.; Leemhuis, F.;
Ebbers, E.; Mueller, R.; Zhang, L.; Pop, E.; Cramer, C.;
Goetz, B.; McKee, A.; Pape, M.; Krause, B. Synth. Commun.
2006, 36, 365.
(10) All the products were known from the literature: 1a [29418-
34-6]: ref. 8k, 8m; 1b [29418-25-5]: ref. 8f, 8g, 8j; 1c
[29418-31-3]: ref. 8f, 8g, 8i, 8k, 8m; 1d [77611-71-3]: ref.
8c, 8r, 8s; 1e [5692-66-0]: ref. 6l, 8d, 8e, 8g, 8h; 1f [7334-
33-0]: ref. 8k, 8m, 8p, 8t, 8u, 8v; 1g [15426-14-9]: ref. 8k,
8m, 8n, 8p, 8q, 8t; 1h [1602-00-2]: ref. 8f, 8g, 8j–m, 8p, 8q,
8s, 8t; 1i [613-55-8]: ref. 8k, 8m, 8n, 8p, 8t, 8u; 1j [6319-23-
9]: ref. 8t, 8u, 8v; 1k [501-58-6]: ref. 8j, 8k–m, 8o, 8p, 8u.
(11) General Procedure for the Reduction of Azobenzenes to
N,N¢-Diarylhydrazines
(7) Terentiev, A. P.; Mogiljanskij, J. D. Dokl. Akad. SSSR, Zh.
Obshch. Khim. 1955, 91, 103.
(8) A number of methods are available for the synthesis of
azobenzenes from various nitrogen-containing benzene
derivatives. See: (a) Schündehütte, K. H.
Azobenzene 1 (0.4–2.1 mmol) was added to a mixture of
H2O (165 mL/mmol of 1), MeOH (165 mL/mmol of 1), and
CH2Cl2 (25 mL/mmol of 1). The resulting mixture was
stirred and heated to reflux, and an excess of sodium
dithionite (see Table 1) was added. After stirring at reflux
(see Table 1), the product mixture was poured into ice and
extracted with Et2O (3 × 100 mL). The combined extracts
were dried (MgSO4) and filtered, and then the solvent was
removed under reduced pressure to give a residue, from
which the product 2 was isolated by flash chromatography
(silica, hexane–EtOAc in a ratio of 90:10). The results are
compiled in Table 1.
Stickstoffverbindungen I In Methoden der Organischen
Chemie (Houben–Weyl), Vol. X/3; Müller, E.; Stroh, R.,
Eds.; Georg Thieme Verlag: Stuttgart, 1965, 371. (b) Lang-
Fugmann, S. Organische Stickstoffverbindungen IV In
Methoden der Organischen Chemie (Houben–Weyl), Vol.
E16d; Klamann, D., Ed.; Georg Thieme Verlag: Stuttgart,
1992, 66. (c) Nölting, E.; Stricker, T. Chem. Ber. 1888, 21,
3138. (d) Chapman, N. B.; Saunders, B. C. J. Chem. Soc.
1941, 496. (e) Horner, L.; Kirmse, W. Justus Liebigs Ann.
Chem. 1955, 597, 66. (f) Edward, J. T. J. Chem. Soc. 1956,
222. (g) Hedayatullah, M.; Dechatre, J. P.; Denivelle, L.
Tetrahedron Lett. 1975, 2039. (h) Bader, H.; Hansen, H.-J.
Helv. Chim. Acta 1979, 62, 2613. (i) Stowell, J. C.; Lau, C.
M. J. Org. Chem. 1986, 51, 1614. (j) Ohe, K.; Uemura, S.;
Sugita, N.; Masuda, H.; Taga, T. J. Org. Chem. 1989, 54,
4169. (k) Wang, X.-Y.; Wang, Y.-L.; Li, J.-P.; Duan, Z.-F.;
Zhang, Z.-Y. Synth. Commun. 1999, 29, 2271. (l) Shaabani,
A.; Lee, D. G. Tetrahedron Lett. 2001, 42, 5833. (m) Li,
X.-C.; Wang, Y.-L.; Wang, J.-Y. J. Chem. Res., Synop.
2002, 540. (n) Prasad, H. S.; Gowda, S.; Gowda, D. C.
Synth. Commun. 2004, 34, 1. (o) Carreno, M. C.; Mudarra,
G. F.; Merino, E.; Ribagorda, M. J. Org. Chem. 2004, 69,
3413. (p) Nanjundaswamy, H. M.; Pasha, M. A. J. Chem.
Res. 2005, 772. (q) Gilbert, A. M.; Failli, A.; Shumsky, J.;
Yang, Y.; Severin, A.; Singh, G.; Hu, W.; Keeney, D.;
Petersen, P. J.; Katz, A. H. J. Med. Chem. 2006, 49, 6027.
(r) Halbritter, G.; Knoch, F.; Wolski, A.; Kisch, H. Angew.
Chem., Int. Ed. Engl. 1994, 33, 1603. (s) Dürr, U.;
Heimemann, F. W.; Kisch, H. J. Organomet. Chem. 1997,
541, 307. (t) Srinivasa, G. R.; Abiraj, K.; Gowda, D. C.
Tetrahedron Lett. 2003, 44, 5835. (u) Mirkhani, V.;
Tangestaninejad, S.; Moghadam, M. J. Chem. Res., Synop.
2003, 792. (v) Pasha, M. A.; Nanjundaswampy, H. M.
J. Chem. Res. 2004, 750.
(12) All the N,N¢-diarylhydrazines except 2,2¢,4,4¢-tetramethyl-
(N,N¢-diphenylhydrazine) (2b) are mentioned several times
in the literature: 2a [107418-14-4]: ref. 8c, 8m, 13f, 13j; 2c
[63615-06-5]: ref. 8m, 13f; 2d [142068-90-4]: ref. 8c; 2e
[5692-66-0]: ref. 8m, 13a; 2f [782-74-1]: ref. 8m, 13g, 13h;
2g [953-01-5]: ref. 8m, 8n, 8q, 13e, 13g; 2h [953-14-0]: ref.
8m, 8p, 8q, 13b–d, 13g, 13h; 2i [787-77-9]: ref. 8m, 8n, 8p,
13e, 13g, 13h, 13j; 2j [1027-32-3]: ref. 13g, 13h, 13j; 2k
[1027-40-3]: ref. 8m, 13b–d. The synthesis and isolation of
2b have been reported by Nölting and Stricker,8c but no data
except the melting point were given.
Data for 2b: mp 119–121 °C (lit.8c mp 120–122 °C). IR
(film): 3364, 3228, 3008, 1627, 1510, 1463, 1444, 1276,
1240, 1153, 1012, 875, 814 cm–1. 1H NMR (200 MHz,
CCl4): d = 2.16 (s, 6 H), 2.19 (s, 6 H), 5.19 (s, 2 H), 6.59–
6.76 (m, 6 H). 13C NMR (50 MHz, CCl4): d = 16.9, 20.3,
111.1, 120.1, 127.4, 127.6, 130.7, 143.7. MS (EI): m/z
(%) = 240 (0.5) [M+], 194 (5), 182 (2), 172 (2), 163 (3), 147
(2), 131 (5), 110 (2), 107 (6), 106 (100), 105 (93), 98 (4), 88
(7), 87 (8), 85 (5), 78 (17), 77 (98), 76 (5), 74 (12). HRMS
(EI): m/z calcd for C16H20N2 [M+]: 240.1626; found:
240.1622.
(13) (a) Helms, A.; Heiler, D.; McLendon, G. J. Org. Chem.
1992, 114, 6227. (b) Karmakar, D.; Prajapati, D.; Sandhu, J.
S. J. Chem. Res., Synop. 1996, 464. (c) Park, K. K.; Han, S.
Y. Tetrahedron Lett. 1996, 37, 6721. (d) Patil, M. L.;
Jnaneshwara, G. K.; Sabde, D. P.; Dongare, M. K.; Sudalai,
A.; Deshpande, V. H. Tetrahedron Lett. 1997, 38, 2137.
(e) Sridhara, M. B.; Srinivasa, G. R.; Gowda, D. C. J. Chem.
Res. 2004, 74. (f) Li, X.; Wang, Y.; Wang, J. Indian J.
Chem., Sect. B: Org. Chem. Incl. Med. Chem. 2004, 43, 677.
(g) Kato, T.; Sato, M.; Tabei, K.; Kawashima, E. Chem.
Pharm. Bull. 1975, 23, 456. (h) Lukashevich, V. O. Dokl.
Akad. Nauk SSSR 1964, 159, 1095; Chem. Abstr. 1965, 62,
7607c. (i) Carlin, R. B. J. Am. Chem. Soc. 1945, 67, 928.
(j) Croce, L. J.; Gettler, J. D. J. Am. Chem. Soc. 1953, 75,
874.
(9) General Procedure for the Preparation of Azobenzenes
1a–k from Anilines
Oxygen was bubbled through a mixture of an aniline
derivative (20 mmol), (CuCl)2 (0.20 g, 2.0 mmol), and dry
pyridine (20 mL), which was stirred at r.t. for 1–3 h. The
reaction was quenched by addition of H2O (20 mL), which
in some cases gave a precipitate, in other cases not. When no
precipitate was formed, the hydrolyzate was extracted with
Et2O (3 × 10 mL) and the combined extracts were dried
(MgSO4), filtered, and concentrated on a rotary evaporator.
Purification by flash chromatography (silica, hexane–EtOAc
Synlett 2007, No. 11, 1695–1698 © Thieme Stuttgart · New York