LETTER
A Mimetic of Archaeal Membrane Lipid
351
Figure 4 Transmission electron micrographs of the polymerized gel that was prepared by UV-irradiation (10 min) of the organogel.
(5) (a) Miyawaki, K.; Takagi, T.; Shibakami, M. Synlett 2002,
1326. (b) Miyawaki, K.; Goto, R.; Takagi, T.; Shibakami,
M. Synlett 2002, 1467.
Acknowledgment
We are grateful to Y. Sato (JEOL) for providing technical assistance
with the electron microscopy. This research was supported by In-
dustrial Technology Research Grant Program in 2001 from New
Energy and Industrial Technology Development Organization
(NEDO) of Japan.
(6) (a) Hanabusa, K.; Yamada, M.; Kimura, M.; Shirai, H.
Angew. Chem., Int. Ed. Engl. 1996, 35, 1949. (b) Inoue, K.;
Ono, Y.; Kanekiyo, Y.; Hanabusa, K.; Shinkai, S. Chem.
Lett. 1999, 429. (c) Hanabusa, K.; Okui, K.; Karaki, K.;
Koyama, T.; Shirai, H. J. Chem. Soc., Chem. Commun.
1992, 1371. (d) Loos, M. D.; Esch, J. V.; Stokroos, I.;
Kellogg, R. M.; Feringa, B. L. J. Am. Chem. Soc. 1997, 119,
12675. (e) Rowan, A. E.; Nolte, R. J. M. Angew. Chem. Int.
Ed. 1998, 37, 63. (f) Terech, P.; Furman, I.; Weiss, R. G. J.
Phys. Chem. 1995, 99, 9558. (g) Terech, P.; Weiss, R. G.
Chem. Rev. 1997, 97, 3133.
References
(1) (a) Schnur, J. M. Science 1993, 262, 1669. (b) Spector, M.
S.; Price, R. R.; Schnur, J. M. Adv. Mater. 1999, 11, 337.
(c) Schnur, J. M.; Ratna, B. R.; Selinger, J. V.; Singh, A.;
Jyothi, G.; Easwaran, R. K. Science 1994, 264, 945.
(d) Selinger, J. V.; Schnur, J. M. Phys. Rev. Lett. 1993, 71,
4091. (e) Spector, M. S.; Selinger, J. V.; Singh, A.;
(7) (a) Brown, D. A.; London, E. J. Membr. Biol. 1998, 164,
103. (b) Brown, R. J. Cell. Sci. 1998, 111, 1.
(8) (a) Ostendorf, M.; Dijkink, J.; Rutjes, F. P. J. T.; Hiemstra,
H. Eur. J. Org. Chem. 2000, 115. (b) Avenoza, A.;
Cativiela, C.; Corzana, F.; Peregrina, J. M.; Zurbano, M. M.
Synthesis 1997, 1146.
(9) (a) Uenishi, J.; Hiraoka, T.; Yuyama, K.; Yonemitsu, O.
Heterocycles 2000, 52, 719. (b) Taylor, E. C.; Macor, J. E.;
Pont, J. L. Tetrahedron 1987, 43, 5145.
(10) Hayashi, Y.; Kinoshita, Y.; Hidaka, K.; Kiso, A.; Uchibori,
H.; Kimura, T.; Kiso, Y. J. Org. Chem. 2001, 66, 5537.
(11) Jacobi, P. A.; Murphree, S.; Rupprecht, F.; Zheng, W. J.
Org. Chem. 1996, 61, 2413.
(12) (a) Synthesis of 7: A solution of Cu(OAc)2 (138 mg, 0.762
mmol) and pyridine (56 mL) was stirred at 120 °C. To the
reaction was then added a solution of 6 (100 mg, 0.076
mmol) in pyridine (5 mL) over 4 h at 120 °C. After cooling
to r.t., pyridine was removed under reduced pressure. The
resulting solution was allowed to stand at 120 °C for 11 h
before the reaction mixture was quenched with sat. citric
acid (50 mL), and then extracted with CHCl3 (300 mL × 2).
The organic phase was washed with brine, dried (Na2SO4),
and concentrated to give a residue. Purification of the
residue was done by flash chromatography (SiO2, CHCl3–
MeOH, 20:1) to give 55 mg (55%) of 7 as colorless solid.
(b) Collins, S. K.; Yap, G. P. A.; Fallis, A. G. Angew. Chem.
Int. Ed. 2000, 39, 385.
(13) (a) All new compounds gave satisfactory analytical and
spectral data. Selected physical data are as follows.
Compound 7: Stage colorless solid, [α]D22+4.87 (c 1.80,
CHCl3). 1H NMR (500 MHz, CDCl3): δ = 7.63–7.60 (m, 8
H), 7.45–7.41 (m, 12 H), 6.27 (d, J = 7.6 Hz, 2 H), 5.93 (t,
J = 5.5 Hz, 2 H), 4.10–4.00 (m, 2 H), 3.79 (dd, J = 10.3, 3.7
Rodriguez, J. M.; Price, R. P.; Schnur, J. M. Langmuir 1998,
14, 3493. (f) Spector, M. S.; Singh, A.; Messersmith, P. B.;
Schnur, J. M. Nano Lett. 2001, 1, 375.
(2) (a) Kushwaha, S. C.; Kates, M.; Sprott, G. D.; Smith, I. C. P.
Biochim. Biophys. Acta 1981, 664, 156. (b) Comita, P. B.;
Gagosian, R. B.; Pang, H.; Costello, C. E. J. Biol. Chem.
1984, 254, 15234. (c) Eguchi, T.; Arakawa, K.; Terachi, T.;
Kakinuma, K. J. Org. Chem. 1997, 62, 1924. (d) Eguchi,
T.; Ibaragi, K.; Kakinuma, K. J. Org. Chem. 1998, 63, 2689.
(e) Aoki, T.; Poulter, C. D. J. Org. Chem. 1985, 50, 5634.
(f) Menger, F. M.; Chen, X. Y. Tetrahedron Lett. 1996, 37,
323. (g) Eguchi, T.; Kano, H.; Kakinuma, K. J. Chem. Soc.,
Chem. Commun. 1996, 365.
(3) (a) Amphiphilic molecules containing a polar head group at
the end of a hydrophobic segment have been termed;
‘bolaamphiphiles’ or ‘bolaphile’. While amphiphiles having
a macrocyclic ring as a hydrophobic segment have been
termed ‘macrocyclic bolaamphiphiles’ (see ref.2f), we prefer
to adopt the abbreviated and more readily pronounce-able
term, ‘cyclobolaphile’. (b) For ‘bolaamphiphiles’ see:
Fuhrhop, J.-H.; Mathiewu, J. Angew. Chem., Int. Ed. Engl.
1984, 23, 100. (c) For ‘bolaphiles’ see: Jayasuriya, N.;
Bosak, S.; Regen, S. L. J. Am. Chem. Soc. 1990, 112, 5844.
(4) On the analogy of the definition of ‘parallel caldarchaeol’
and ‘antiparallel caldarchaeol’ that have a parallel and
antiparallel arrangement of glycerol units, respectively, we
term cyclobolaphile with a parallel arrangement of glycerol
units ‘parallel cyclobolaphile’, and that with an antiparallel
arrangement ‘antiparallel cyclobolaphile’, see: Gräther, O.;
Arigoni, D. J. Chem. Soc., Chem. Commun. 1995, 405.
Synlett 2003, No. 3, 349–352 ISSN 0936-5214 © Thieme Stuttgart · New York