CD3COCD3) 3.98 (3H, s, OCH3), 4.42 (2H, q, J = 8.97 Hz,
CH2), 7.34 (2H, d, J = 6.5 Hz, H3, H5), 8.22 (2H, d, J = 6.5 Hz,
H2, H6); δC (68 MHz, CDCl3) 40.94 (q, JFC = 34.4 Hz, CH2),
55.44 (1C, q, CH3), 124.57 (1C, q, JFC = 278.3 Hz, CF3), 113.56
(2C, d, CH, C3, C5), 129.42 (2C, d, CH, C2, C6), 125.66 (1C, s,
(0.45 g, 0.0017 mol) in Analar acetone (1 cm3) was added to a
stirred solution of sodium acetate (2.78 g, 0.035 mol) and acetic
acid (0.5 cm3) in 1 : 1 acetone–water (12 cm3). After stirring at
room temperature overnight, the acetone was removed and the
aqueous residue was extracted with chloroform. After drying
(MgSO4), the organic layer was removed and the crude product
was purified by column chromatography. Yield, 0.35 g, 72%
(Found: C, 45.80; H, 3.29; N, 9.62; F, 19.67. C11H9F3N2O4
requires C, 45.53; H, 3.12; N, 9.65; F, 19.64%); νmax (KBr)/cmϪ1
C1), 162.67 (1C, s, C4), 167.54 (1C, s, C᎐O); m/z 233 (Mϩ, 10%),
᎐
135 (100), 107 (15), 77 (48).
N-(2,2,2-Trifluoroethyl)-p-methoxybenzimidoyl chloride (2e).
Phosphorus pentachloride (0.13 g, 0.006 mol) was added to a
solution of the amide 7e (0.125 g, 0.006 mol) in dry benzene
(25 cm3). After refluxing for 12 h, the benzene and phosphorus
oxychloride were removed by distillation to yield a yellow oil
which was purified by passing through a layer of Merck silica
7734, particle size 0.063–0.2 mm, using dry CH2Cl2 as eluant.
Yield, 0.098 g (65%). Found: C, 47.48; H, 3.58; N, 5.48; F,
22.76; Cl, 13.98. C10H9F3ClNO requires C, 47.73; H, 3.60; N,
1720 (C᎐O), 1681 (C᎐O), 1535 (NO , as stretch), 1150 (CF, st);
᎐
᎐
2
λmax (dioxane)/nm 260 (ε = 11,700); δH (270 MHz, CDCl3) 2.21
(3H, s, CH3), 4.56 (2H, q, J = 8.61 Hz, CH2), 7.81 (2H, d, H2,
H6), 8.36 (2H, d, H3, H5); δC (68 MHz, CDCl3) 25.66 (1C, q,
2
1
CH3), 45.39 (q, JFC = 35.4 Hz, CH2), 123.69 (q, JFC = 280.5
Hz, CF3), 124.34, 129.25 (4C, d, CH, aromatic), 140.27 (1C, s,
C1), 150.01 (1C, s, C4), 171.35, 171.29 (2C, s, C᎐O); m/z 290
᎐
(Mϩ, 5%), 150 (60), 104 (20), 76 (15), 43 (100).
5.57; F, 22.69, Cl, 14.12%); νmax (KBr)/cmϪ1 1662 (C᎐N), 1155
᎐
(CF3, st), 689 (CF3, st); λmax (dioxane)/nm 274 (ε = 177000);
δH (270 MHz, CDCl3) 3.85 (3H, s, CH3), 4.14 (2H, q, J = 9.34
Hz, CH2), 6.90 (2H, d, J = 9.16 Hz, H3, H5), 7.99 (2H, d,
J = 9.16 Hz, H2, H6).
N-Acetyl-N-ethyl-p-nitrobenzamide (5b). Compound 5b was
similarly formed in 67% yield (Found: C, 56.18; H, 5.22; N,
11.73. C11H12N2O4 requires C, 55.95; H, 5.08; N, 11.86%);
νmax (KBr)/cmϪ1 1710 (C᎐O), 1679 (C᎐O); ν
(dioxane)/nm
᎐
᎐
max
237 (ε = 7900); δH (270 MHz, CDCl3) 1.28 (3H, t, J = 7.35 Hz,
CH3), 2.15 (3H, s, CH3), 3.49 (2H, q, J = 7.35 Hz, CH2), 7.90
(2H, d, J = 8.98 Hz, H3, H5), 8.25 (2H, d, J = 8.98 Hz, H2, H6);
m/z 236 (Mϩ, 20%), 150 (55), 76 (52), 43 (100).
5-p-Nitrophenyl-1-(2,2,2-trifluoroethyl)tetrazole (9a). A solu-
tion of N-(2,2,2-trifluoroethyl)-p-nitrobenzimidoyl chloride 2a
(0.43 g, 0.0016 mol) in Analar acetone (20 cm3) was added
dropwise to a vigorously stirred solution of sodium azide (2.08
g, 0.032 mol) in 1 : 1 acetone–water (50 cm3). The mixture was
left stirring at room temperature overnight. The acetone was
then removed by distillation. The resulting white precipitate
was filtered and washed with water. The pure product was
obtained by passing through a layer of Merck silica 7734,
particle size 0.063–0.2 mm, using dry CH2Cl2 as eluant. Yield,
0.295 g (68%), mp 118–120 ЊC (Found: C, 39.47; H, 2.17; N,
25.14; F, 20.72. C9H6F3N5O2 requires C, 39.57; H, 2.21; N,
25.64; F, 20.86%); λmax (dioxane)/nm 272 (ε = 12200); νmax
N-Acetyl-N-isopropyl-p-nitrobenzamide (5c). Compound 5c
was formed in 65% yield (Found: C, 56.23; H, 6.64; N, 11.45.
C12H14N2O4 requires C, 56.91; H, 6.76; N, 11.06%); νmax (KBr)/
cmϪ1 1704 (C᎐O), 1685 (C᎐O), 1527 (NO , as stretch);
᎐
᎐
2
λmax (dioxane)/nm 236 (ε = 7800); δH (270 MHz, CDCl3) 1.44
(6H, d, J = 6.78 Hz, (CH3)2), 2.11 (3H, s, CH3), 4.47 (1H, sept,
J = 6.78 Hz, CH ), 7.81 (2H, d, J = 8.97 Hz, H3, H5), 8.31 (2H,
d, J = 8.97 Hz, H2, H6); δC (68 MHz, CDCl3–CD3COCD3)
20.53 (2C, q, CH3), 26.59 (1C, q, CH3), 50.90 (1C, d, CH),
124.11, 129.15 (4C, d, CH, aromatic), 142.30 (1C, s, C1), 149.76
(KBr)/cmϪ1 1537 (conj. cyclic sys.), 1445 (N᎐N), 1171 (CF, st);
᎐
(1C, s, C4), 172.83, 172.95 (2C, s, C᎐O); m/z 250 (Mϩ, 25%), 193
δH (270 MHz, CDCl3) 5.08 (2H, q, J = 7.69 Hz, CH2), 7.91 (2H,
᎐
d, J = 8.98 Hz, H3, H5), 8.48 (2H, d, J = 8.98 Hz, H2, H6);
(10), 150 (45), 76 (20), 43 (100).†
2
δC (68 MHz, CDCl3–CD3COCD3) 48.79 (q, JFC = 36.6 Hz,
1
CH2), 122.25 (q, JFC = 279.4 Hz, CF3), 124.66, 130.61 (4C, d,
CH, aromatic), 129.31 (1C, s, C1), 149.92 (1C, s, C4), 154.34
References
(1C, s, C᎐N); m/z 273 (Mϩ, 60%), 76 (40), 83 (100).
᎐
1 H. O. Kalinowski and H. Kessler, Top. Stereochem., 1973, 7, 295.
2 (a) D. Y. Curtin, E. J. Grubbs and C. G. Mc Carty, J. Am. Chem.
Soc., 1966, 88, 2775; (b) K. J. Dignam and A. F. Hegarty, J. Chem.
Soc., Perkin Trans. 2, 1979, 1437.
3 Z. Rappoport and R. Ta-Shma, Tetrahedron Lett., 1972, 52, 5281;
H. Kessler, Angew. Chem., Int. Ed. Engl., 1970, 9, 219; R. Knorr,
T. P. Hoang, J. Mehlstaubl, M. Hintermeyer-Hilpert, H.-D.
Ludemann, E. Lang, G. Sextl, W. Rattay and P. Bohrer, Chem. Ber.,
1993, 126, 217.
4 H. Kessler, Tetrahedron Lett., 1968, 15, 2041; H. Kessler and
D. Leibfritz, Tetrahedron Lett., 1969, 6, 427; H. Kessler
and D. Leibfritz, Tetrahedron, 1970, 26, 1805; D. Leibfritz and
H. Kessler, J. Chem. Soc., Chem. Commun., 1970, 655; H. Kessler,
P. F. Bley and D. Leibfritz, Tetrahedron, 1971, 27, 1687.
5 M. Raban, J. Chem. Soc., Chem. Commun., 1970, 1415; M. Raban
and E. Carlson, J. Am. Chem. Soc., 1971, 93, 685; G. E. Hall,
W. J. Middleton and J. D. Roberts, J. Am. Chem. Soc., 1971, 93,
4778; T. J. Lang, G. J. Wolber and R. D. Bach, J. Am. Chem. Soc.,
1981, 103, 3275.
6 D. G. McCarthy and A. F. Hegarty, J. Chem. Soc., Perkin Trans. 2,
1977, 1080; D. G. McCarthy and A. F. Hegarty, J. Chem. Soc.,
Perkin Trans. 2, 1977, 1085.
7 (a) A. F. Hegarty, K. Brady and M. Mullane, J. Chem. Soc.,
Chem. Commun., 1978, 871; (b) A. F. Hegarty, K. Brady and
M. Mullane, J. Chem. Soc., Perkin Trans. 2, 1980, 535.
8 W. B. Jennings, S. Al-Showiman, M. S. Tolley and D. R. Boyd,
J. Chem. Soc., Perkin Trans. 2, 1975, 1535.
9 A. F. Hegarty, S. J. Eustace, N. M. Tynan, N. N. Pham-Tran and
M. T. Nguyen, J. Chem. Soc., Perkin Trans. 2, 2001, 1239.
10 I. Ugi, F. Beck and U. Fetzer, Chem. Ber., 1962, 95, 126; A. F.
Hegarty, J. D. Cronin and F. L. Scott, J. Chem. Soc., Perkin Trans. 2,
1975, 429.
5-p-Nitrophenyl-1-isopropyltetrazole (9c). Compound 9c was
similarly prepared in 56% yield, mp 122–124 ЊC. (Found: C,
51.14; H, 4.68; N, 30.24. C10H11N5O2 requires C, 51.52; H, 4.72;
N, 30.03%); λmax (dioxane)/nm 272 (ε = 12,200); δH (270 MHz,
CDCl3) 2.02 (6H, d, J = 6.59 Hz, (CH3)2), 5.27 (1H, sept,
J = 6.59 Hz, CH ), 7.93 (2H, d, J = 8.97 Hz, H3, H5), 8.45 (2H,
d, J = 8.97 Hz, H2, H6); m/z 233 (Mϩ, 25%), 191 (15), 76 (20),
43 (100).
5-Phenyl-1-(2,2,2-trifluoroethyl)tetrazole (9d). Yield 64%
(Found: C, 47.33; H, 3.08; N, 24.21; F, 25.38. C9H7F3N4
requires C, 47.39; H, 3.06; N, 24.55; F, 24.98%); λmax (dioxane)/
nm 243 (ε = 6,900); δH (270 MHz, CDCl3) 5.02 (2H, q, J = 7.75
Hz, CH2), 7.6 (5H, m, aromatic); m/z 228 (Mϩ, 1%), 186 (100),
77 (62).
5-p-Methoxyphenyl-1-(2,2,2-trifluoroethyl)tetrazole
(9e).
Yield, 50%, mp 104–106 ЊC (Found: C, 46.52; H, 3.51; N, 21.70;
F, 22.07. C9H6F3N5O2 requires C, 46.80; H, 3.53; N, 20.49; F,
20.87%); λmax (dioxane)/nm 253 (ε = 13,200); δH (270 MHz,
CDCl3) 3.52 (3H, s, OCH3), 4.43 (2H, q, J = 7.69 Hz, CH2), 6.42
(2H, d, J = 7 Hz, H3, H5), 6.81 (2H, d, J = 7 Hz, H2, H6); m/z
258 (Mϩ, 10%), 215, (100), 108 (20), 90 (40).
N-Acetyl-N-(2,2,2-trifluoroethyl)-p-nitrobenzamide (5a).
A
solution of N-(2,2,2-trifluoroethyl)-p-nitrobenzimidoyl chloride
J. Chem. Soc., Perkin Trans. 2, 2002, 1328–1334
1333