Scheme 4 Reagents and conditions: (a) Pd(CH3CN)2Cl2 (0.05 equiv.),
DMF, 25 °C, 48 h, 60%; (b) TBAF (6.0 equiv.), THF, 25 °C, 12 h, 80%; (c)
Et3N (6.0 equiv.), 2,4,6-trichlorobenzoyl chloride (1.5 equiv.), THF, 1.5 h,
0 °C; then 4-DMAP (5.0 equiv.), benzene, 25 °C, 1 h, 60%.
Scheme 3 Reagents and conditions: (a) PMBCl (2.0 equiv.), NaH (2.0
equiv.), Bu4N+I2 (2.0 equiv.), DMF, 0 ? 25 °C, 1 h, 90%; (b)
Allenylmagnesium bromide (1.25 equiv.), Et2O, 278 ? 25 °C, 1 h, 90%;
(c) TBSOTf (2.5 equiv.), 2,6-lutidine (4.0 equiv.), CH2Cl2, 0 ? 25 °C,
97%; (d) BuLi (2.0 equiv.), MeI (5.0 equiv.), THF, 278 ? 25 °C, 2 h, 95%;
(e) DDQ (2.0 equiv.), CH2Cl2–H2O (18+1), 0 ? 25 °C, 97%; (f) TPAP
(0.05 equiv.), NMO (6.0 equiv.), 4 Å MS, CH2Cl2, 0 ? 25 °C, 2 h, 90%; (g)
B-(+)-allyldiisopinocampheylborane (4.0 equiv.), Et2O, 2100 °C, 1 h; then
NaBO3·4H2O (15 equiv.), THF–H2O (1+1), 25 °C, 12 h, 85%, 24:
diastereoisomer ca. 10+1; h) MeOTf (3.0 equiv.), 2,6-di-tert-butyl-
4-methylpyridine (5.0 equiv.), CH2Cl2, 40 °C, 24 h, 85%; (i) K3Fe(CN)6
(3.0 equiv.), K2CO3 (3.0 equiv.), (DHQ)2-PYR (0.02 equiv.), OsO4 (0.01
equiv. 2.5 wt% in ButOH), ButOH–H2O (1+1), 0 °C, 12 h, 85%, 26:
diastereoisomer ca. 6+1; (j) Bu2SnO (1.1 equiv.), toluene, 110 °C, 12 h; then
BnBr (1.2 equiv.), Bu4N+I2 (1.5 equiv.), toluene, 80 °C, 2 h, 85%; (k)
TBSOTf (2.5 equiv.), 2,6-lutidine (4.0 equiv.), CH2Cl2, 0 ? 25 °C, 97%; (l)
Cp2ZrHCl (2.0 equiv.), THF, 50 °C, 2 h; then I2 (2.0 equiv.), THF, 215 ?
compounds for biological screening purposes and paves the way
for an eventual total synthesis of apoptolidin itself. Alternative
strategies towards this macrocycle, including a palladium(0)-
catalysed coupling to form the C11–C12 single bond and an
olefin metathesis approach to form the C10–C11 double bond of
the construct are in progress.
We thank Drs G. Siuzdak and D. H. Huang for mass
spectrometric and NMR assistance, respectively. This work was
financially supported by The Skaggs Institute for Chemical
Biology, the National Institutes of Health (USA), a Feodor
Lynen Fellowship of the Alexander von Humboldt Stiftung (to
B. W.) and grants from Abbott, Amgen, Boehringer-Ingelheim,
Glaxo-Wellcome, Hoffmann-La Roche, Dupont, Merck, No-
vartis, Pfizer, Schering Plough, and Bristol-Myers Squibb.
25 °C, 0.5 h, 65%. (DHQ)2-PYR
= 2,5-diphenyl-4,6-bis(9-O-dihy-
droquinyl)pyrimidine.
Notes and references
† Selected data for 2: Rf = 0.40 (silica gel, EtOAc–hexane 1+1); [a]D20
250.0 (MeOH, c 0.42); nmax(film)/cm21 3419, 2925, 1696, 1453, 1381,
1243, 1104, 807, 712; dH(500 MHz, CDCl3) 7.35–7.20 (m, 5H, C6H5), 7.18
(s, 1H, H-3), 6.08 (d, J 15.4, 1H, H-11), 6.08 (s, 1H, H-5), 5.56 (br t, J 8.0,
1H, H-13), 5.35 (dd, J 15.4, 8.1, 1H, H-10), 5.22–5.20 (m, 1H, H-19), 5.13
(br d, J 9.9, 1H, H-7), 4.58 (d, J 12.1, 1H, OCH2C6H5), 4.51 (d, J 12.1, 1H,
OCH2C6H5), 3.90 (dd, J 8.4, 8.1, 1H, H-9), 3.60–3.46 (m, 3H), 3.42, (s, 3H,
OCH3), 3.44–3.40 (m, 1H), 2.90–2.87 (m, 1H), 2.55–2.43 (m, 2H),
2.30–2.24 (m, 1H), 2.13 (s, 3H), 2.07 (s, 3H), 1.97–1.89 (m, 1H), 1.87 (s,
3H), 1.85–1.78 (m, 1H), 1.68 (s, 3H), 1.65–1.52 (m, 2H), 1.13 (d, J 6.6, 3H,
8-CH3); dC(150 MHz, CDCl3) 168.7, 145.9, 145.1, 140.6, 138.0, 137.2,
136.5, 133.4, 132.5, 132.3, 131.7, 128.8 (2C), 127.6 (2C), 127.4, 123.2,
82.0, 79.7, 73.7, 73.2, 71.5, 71.0, 60.4, 39.5, 35.5, 34.6, 24.4, 17.5, 17.2,
16.2, 13.7, 12.0; HRMS (MALDI) calc. for C33H46NaO6 (M + Na+):
561.3192, found: 561.3216.
of allenylmagnesium bromide10 to 18 gave the desired hex-
5-yne-1,2-diol (19) in 90% yield. Silylation of the free hydroxy
group in 19 with TBSOTf–2,6-lutidine followed by methylation
of the terminal alkyne (BuLi, McI) afforded 21 in 95% yield.
Subsequent removal of the PMB group from 21 in the presence
of DDQ in CH2Cl2–H2O (18+1) (97% yield) followed by
TPAP–NMO mediated oxidation of the resulting alcohol 22
readily provided 23 (90% yield). Exposure of 23 to b-
(+)-allyldiisopinocampheylborane according to Brown et al.11
furnished a mixture of diastereomeric alcohols (ca. 10+1 ratio,
85% combined yield) from which the major and desired isomer
(24) was isolated chromatographically. Methylation of the
hydroxy group (MeOTf, 2,6-di-tert-butyl-4-methylpyridine,
40 °C, 85% yield)12 in 24 furnished 25 whose terminal olefin
underwent stereoselective dihydroxylation in the presence of
AD-mix-a13 to provide 26 together with its (minor) diastereoi-
somer (ca. 6+1 ratio) in 85% combined yield. The two
diastereoisomers could not be easily separated chromato-
graphically at this stage, but after protection of the primary
hydroxy group as a benzyl ether (Bu2SnO, BnBr, toluene),14 the
desired diastereoisomer 27 was readily isolated by flash
chromatography. Subsequent protection of the secondary
hydroxy group of 27 as a TBS ether (TBSOTf, 2,6-lutidine,
97%) followed by hydrozirconation–iodonation (Cp2ZHCl,
THF, 50 °C; then I2, 215 °C) generated the key intermediate 4
(65% overall yield) via 28.
1 M. Debbas and E. White, Genes Dev., 1993, 7, 546.
2 J. W. Kim, H. Adachi, K. Shin-ya, Y. Hayakawa and H. Seto,
J. Antibiot., 1997, 50, 628.
3 Y. Hayakawa, J. W. Kim, H. Adachi, K. Shin-ya, K. Fujita and H. Seto,
J. Am. Chem. Soc., 1998, 120, 3524.
4 J. K. Stille, Angew. Chem., Int. Ed. Engl., 1986, 25, 508; J. Betzer, J.
Lallemand and A. Pancrazi, Synthesis, 1998, 522.
5 J. Inanaga, K. Hirata, H. Saeki, T. Katsuki and M. Yamaguchi, Bull.
Chem. Soc. Jpn., 1979, 52, 1989; K. C. Nicolaou, M. R. V. Finlay, S.
Ninkovic and F. Sarabia, Tetrahedron, 1998, 54, 7127.
6 R. L. Danheiser, D. J. Carini, D. M. Fink and A. Basak, Tetrahedron,
1983, 39, 435.
7 H. C. Brown and K. S. Bhat, J. Am. Chem. Soc., 1986, 108, 293.
8 For reviews, see: W. S. Wadsworth Jr., Org. React., 1977, 25, 73; B. E.
Maryanoff and A. B. Reitz, Chem. Rev., 1989, 89, 863.
9 H. X. Zhang, F. Guibe and G. Balavoine, J. Org. Chem., 1990, 55,
1857.
10 L. Brandsma and H. Verkruijisse, Preparative Polar Organometallic
Chemistry I, Springer, Berlin, 1987, 63.
11 U. S. Racherla and H. C. Brown, J. Org. Chem., 1991, 56, 401.
12 D. M. Walba, W. N. Thurmes and R. C. Haltiwanger, J. Org. Chem.,
1988, 53, 1046.
With both key intermediates 3 and 4 in hand, the stage was set
for the crucial coupling and macrolactonization steps (see
Scheme 4). Thus, upon treatment with catalytic amounts of
Pd(CH3CN)2Cl2 (0.05 equiv.) in DMF, 3 and 4 readily coupled
to afford 29 in 60% yield. Subsequent exposure of 29 to TBAF
resulted in concomitant removal of all three silyl protecting
groups furnishing 30 in 80% yield. Finally, Yamaguchi
macrolactonization of seco-acid 30 (2,4,6-trichlorobenzoyl
chloride, DMAP, Et3N) resulted in the ring-selective formation
of macrocyclic core 2† in 60% yield.
13 G. A. Crispino, K.-S. Jeong, H. C. Kolb, Z.-M. Wang, D. Xu and K. B.
Sharpless, J. Org. Chem., 1993, 58, 3785.
14 T. B. Grindley, Adv. Carbohydr. Chem. Biochem., 1998, 53, 17.
The described chemistry demonstrates the feasibility of the
present strategy for the chemical synthesis of apoptolidin-like
Communication b000424n
308
Chem. Commun., 2000, 307–308