2956
J. Am. Chem. Soc. 2000, 122, 2956-2957
Total Syntheses of Thiocoraline and BE-22179:
Establishment of Relative and Absolute
Stereochemistry
Dale L. Boger* and Satoshi Ichikawa
Department of Chemistry and
The Skaggs Institute for Chemical Biology
The Scripps Research Institute
10550 North Torrey Pines Road, La Jolla, California 92037
ReceiVed January 18, 2000
Thiocoraline (1, Figure 1) is a potent antitumor antibiotic1
isolated from Micromonospora sp. L-13-ACM2-092. It constitutes
the newest member of the 2-fold symmetric bicyclic octadep-
sipeptides which include BE-221792 (2), triostin A3 (3), and
echinomycin4 (4), which bind to DNA with bisintercalation.5,6
Unlike BE-22179, thiocoraline does not inhibit DNA topoi-
somerase I or II, but it does inhibit DNA polymerase R at
concentrations that inhibit cell cycle progression and clonoge-
nicity.7 It was found to unwind double-stranded DNA,7 and thus
it may bisintercalate DNA analogous to triostin, echinomycin,
and members of the larger cyclic decadepsipeptides including
sandramycin,8,9 luzopeptins,9,10 and quinoxapeptins.11 Studies on
thiocoraline as well as BE-22179 have established their two-
dimensional structures but not their relative and absolute stereo-
chemistry.1,2 Triostin and echinomycin possess a D-stereochemistry
at the R-position of the amide linkage to the quinoxaline
chromophore (D-Ser) and L-stereochemistry at the remaining
stereogenic centers. We have shown that the analogous centers
of sandramycin8 and the quinoxapeptins,11 like the luzopeptins,10
also incorporate D-Ser. Thus, we anticipated that 1, as well as 2,
might possess a similar stereochemistry with incorporation of an
unusual chromophore bearing D-Cys. Herein, we report the first
total syntheses of thiocoraline and BE-22179, the determination
of their relative and absolute stereochemistry, and the preparation
of sufficient material with which further studies may be conducted.
Key elements of the approach include the late stage introduction
of the chromophore, symmetrical tetrapeptide coupling, macro-
Figure 1.
cyclization of the 26-membered octadepsipeptide conducted at
the single secondary amide site following disulfide formation,
and a convergent assemblage of the tetradepsipeptide with
introduction of the labile thiol ester linkage in the final coupling
reaction under near racemization free conditions. By virtue of
the late stage introduction of the chromophore and despite the
challenges this imposes in the synthesis because of a potential
cleavage of the macrocyclic thiol ester, this approach provides
ready access of a range of chromophore analogues.
The assemblage of tetradepsipeptide 16 from tripeptide 15 and
N-Cbz-D-Cys-OTce (12) along with the preparation of the three
suitably functionalized Cys residues found in 1 are summarized
in Scheme 1. Sequential S- and N-protection of N-Me-Cys-OH
(5)12 with an acetamidomethyl (Acm) group (1.5 equiv of
N-hydroxymethylacetamide, H2SO4, H2O, 25 °C, 12 h) and BOC
group (1.2 equiv of BOC2O, NaOH, THF-H2O, 25 °C, 12 h,
62%) gave 6, the precursor to the bridging disulfide Cys residue.
Selective S-methylation of N-Me-Cys-OH (5,12 1.0 equiv of MeI,
2.0 equiv of NaHCO3, THF-H2O, 25 °C, 3 h) followed by BOC
protection (1.2 equiv of BOC2O, NaOH, THF-H2O, 25 °C, 12
h, 73%) provided 7. Esterification of 7 (1.0 equiv of TMSCHN2,
89%) followed by BOC deprotection of 8 (3 M HCl-AcOEt,
91%) provided 9, the precursor to the second L-Cys residue.
(1) (a) Romeo, F.; Espliego, F.; Baz, J. P.; de Quesada, T. G.; Gravalos,
D.; de la Calle, F.; Fernandez-Puentes, J. L. J. Antibiot. 1997, 50, 734. (b)
Perez Baz, J.; Canedo, L. M.; Fernandez-Puentes, J. L. J. Antibiot. 1997, 50,
738. (c) Perez Baz, J.; Millan, F. R.; De Quesada, T. G.; Gravalos, D. G.
PCT Int. Appl., WO952773, 1995; Chem. Abstr. 1995, 124, 115561.
(2) Okada, H.; Suzuki, H.; Yoshinari, T.; Arakawa, H.; Okura, A.; Suda,
H. J. Antibiot. 1994, 47, 129.
(3) (a) Shoji, J.; Katagiri, K. J. Antibiot. 1961, 14, 335. (b) Shoji, J.; Tori,
K.; Otsuka, H. J. Org. Chem. 1965, 30, 2772. (c) Otsuka, H.; Shoji, J.
Tetrahedron 1967, 23, 1535. (d) Otsuka, H.; Shoji, J.; Kawano, K.; Kyogoku,
Y. J. Antibiot. 1976, 29, 107.
(4) (a) Corbaz, R.; Ettlinger, L.; Graumann, E.; Keller-Schierlein, W.;
Kradolfer, F.; Neipp, L.; Prelog, V.; Reusser, P.; Zahner, H. HelV. Chim. Acta
1957, 40, 199. (b) Keller-Schierlein, W.; Prelog, V. HelV. Chim. Acta 1957,
40, 205. (c) Keller-Schierlein, W.; Mihailovic, M. Lj.; Prelog, V. HelV. Chim.
Acta 1959, 42, 305. (d) Martin, D. G.; Mizsak, S. A.; Biles, C.; Stewart, J.
C.; Baczynskyj, L.; Meulman, P. A. J. Antibiot. 1975, 28, 332. (e) Dell, A.;
Williams, D. H.; Morris, H. R.; Smith, G. A.; Feeney, J.; Roberts, G. C. K.
J. Am. Chem. Soc. 1975, 97, 2497.
(5) (a) Waring, M. J.; Wakelin, L. P. G. Nature 1974, 252, 653. (b) Wang,
A. H.-J.; Ughetto, G.; Quigley, G.; Hakoshima, T.; van der Marel, G. A.; van
Boom, J. H.; Rich, A. Science 1984, 225, 1115. (c) Quigley, G. J.; Ughetto,
G.; van der Marel, G. A.; van Boom, J. H.; Wang, A. H.-J.; Rich, A. Science
1984, 232, 1255.
(6) Yoshinari, T.; Okada, H.; Yamada, A.; Uemura, D.; Oka, H.; Suda,
H.; Okura, A. Jpn. J. Cancer Res. 1994, 85, 550.
(7) (a) Erba, E.; Bergamaschi, D.; Ronzoni, S.; Taverna, S.; Bonfanti, M.;
Catapano, C. V.; Faircloth, G.; Jimeno, J.; D’lncalci, M. Br. J. Cancer 1999,
80, 971. (b) Yoshinari, T.; Okada, H.; Yamada, A.; Uemura, D.; Oka, H.;
Okura, A. Jpn. J. Cancer Res. 1994, 85, 550.
(8) Isolation: Matson, J. A.; Bush, J. A. J. Antibiot. 1989, 42, 1763. Total
synthesis: Boger, D. L.; Chen, J.-H. J. Am. Chem. Soc. 1993, 115, 11624.
Boger, D. L.; Chen, J.-H.; Saionz, K. W. J. Am. Chem. Soc. 1996, 118, 1629.
(9) Boger, D. L.; Chen, J.-H.; Saionz, K. W.; Jin, Q. Bioorg. Med. Chem.
1998, 6, 85.
(10) Isolation: Konishi, M.; Ohkuma, H.; Sakai, F.; Tsuno, T.; Koshiyama,
H.; Naito, T.; Kawaguchi, H. J. Antibiot. 1981, 34, 148. Structure and
stereochemistry: Arnold, E.; Clardy, J. J. Am. Chem. Soc. 1981, 103, 1243.
Total synthesis (luzopeptins A-C): Boger, D. L.; Ledeboer, M. W.; Kume,
M. J. Am. Chem. Soc. 1999, 121, 1098. Boger, D. L.; Ledeboer, M. W.; Kume,
M.; Searcey, M.; Jin, Q. J. Am. Chem. Soc. 1999, 121, 11375.
(11) Isolation: Lingham, R. B.; Hsu, A. H. M.; O’Brien, J. A.; Sigmund,
J. M.; Sanchez, M.; Gagliardi, M. M.; Heimbuch, B. K.; Genilloud, O.; Martin,
I.; Diez, M. T.; Hirsch, C. F.; Zink, D. L.; Liesch, J. M.; Koch, G. E.; Garter,
S. E.; Garrity, G. M.; Tsou, N. N.; Salituro, G. M. J. Antibiot. 1996, 49, 253.
Total synthesis: Boger, D. L.; Ledeboer, M. W.; Kume, M.; Jin, Q. Angew.
Chem., Int. Ed. 1999, 38, 2424.
(12) Blondeau, P.; Berse, C.; Gravel, D. Can. J. Chem. 1967, 45, 49.
10.1021/ja0001660 CCC: $19.00 © 2000 American Chemical Society
Published on Web 03/14/2000