Organic Letters
Letter
(4) For recent reviews, see: (a) Kunz, K.; Scholz, U.; Ganzer, D. Synlett
2003, 2428−2439. (b) Sambiagio, C.; Marsden, S. P.; Blacker, A. J.;
McGowan, P. C. Chem. Soc. Rev. 2014, 43, 3525−3550. For some
representative examples, see: (c) Naidu, A. B.; Jaseer, E. A.; Sekar, G. J.
Org. Chem. 2009, 74, 3675−3679. (d) Sugata, H.; Tsubogo, T.; Kino,
Y.; Uchiro, H. Tetrahedron Lett. 2017, 58, 1015−1019.
(5) For recent reviews, see: (a) Qiao, J. X.; Lam, P. Y. S. Synthesis
2011, 2011, 829−856. (b) Evano, G.; Blanchard, N.; Toumi, M. Chem.
Rev. 2008, 108, 3054−3131. (c) Muzart, J. Tetrahedron 2005, 61,
5955−6008. (d) Hartwig, J. F. Angew. Chem., Int. Ed. 1998, 37, 2046−
2067. (e) Hartwig, J. F. Acc. Chem. Res. 1998, 31, 852−860. For an
example with sterically hindered diaryl ethers, see: (f) Burgos, C. H.;
Barder, T. E.; Huang, X.; Buchwald, S. L. Angew. Chem., Int. Ed. 2006,
45, 4321−6.
(6) For recent reviews, see: (a) Hintermann, L., Recent Developments
in Metal-Catalyzed Additions of Oxygen Nucleophiles to Alkenes and
Alkynes. In C−X Bond Formation; Vigalok, A., Ed.; Springer: Berlin,
2010; pp 123−155. (b) Hanley, P. S.; Hartwig, J. F. Angew. Chem., Int.
Ed. 2013, 52, 8510−8525. (c) Rodriguez-Ruiz, V.; Carlino, R.;
Bezzenine-Lafollee, S.; Gil, R.; Prim, D.; Schulz, E.; Hannedouche, J.
Dalton Trans. 2015, 44, 12029−12059. For an example of
intramolecular etherification, see: (d) Hamilton, D. S.; Nicewicz, D.
A. J. Am. Chem. Soc. 2012, 134, 18577−18580.
were successfully coupled with the α-bromo acids. It was
observed that the uncatalyzed reactions between thiophenols
and α-bromo acids could proceed, albeit with much lower yields
(Scheme 4, 55). Because of the accelerated decomposition of
the carboxylic acids upon heating, we were unable to make bis-
tertiary ethers with satisfactory yields. The carboxylic acid
products provide ample opportunities for further modification,
as they can be easily converted to esters, amides, aldehydes, and
alcohols. Furthermore, these functionalized carboxylic acids can
potentially serve as coupling partners in various decarboxylative
coupling reactions.18
In conclusion, we have developed an efficient method for the
synthesis of sterically congested ethers and thioethers. This
scalable transformation proceeds at ambient temperature and is
tolerant toward air and moisture. We anticipate that this method
will benefit the field of medicinal chemistry and chemical
biology, where hindered ethers are commonly found as
structural motifs in biologically active molecules and small
molecule probes, yet no general synthetic tools have been
available for their synthesis. Currently, studies are underway to
further probe the reaction mechanism and expand the reaction
scope.
(7) Barton, D. H. R.; Bhatnagar, N. Y.; Blazejewski, J.-C.; Charpiot, B.;
Finet, J.-P.; Lester, D. J.; Motherwell, W. B.; Papoula, M. T. B.;
Stanforth, S. P. J. Chem. Soc., Perkin Trans. 1 1985, 2657.
(8) (a) Ikegai, K.; Fukumoto, K.; Mukaiyama, T. Chem. Lett. 2006, 35,
612−613. (b) Mukaiyama, T.; Sakurai, N.; Ikegai, K. Chem. Lett. 2006,
35, 1140−1141. (c) Sakurai, N.; Ikegai, K.; Mukaiyama, T. Arkivoc
2007, 2007, 254−264.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
(9) Lindstedt, E.; Stridfeldt, E.; Olofsson, B. Org. Lett. 2016, 18,
4234−4237.
Experimental details, characterizations of compounds,
(10) Salvador, T. K.; Arnett, C. H.; Kundu, S.; Sapiezynski, N. G.;
Bertke, J. A.; Raghibi Boroujeni, M.; Warren, T. H. J. Am. Chem. Soc.
2016, 138, 16580−16583.
AUTHOR INFORMATION
■
(11) Yan, M.; Lo, J. C.; Edwards, J. T.; Baran, P. S. J. Am. Chem. Soc.
2016, 138, 12692−12714.
Corresponding Author
ORCID
(12) (a) Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashimura, T.
Macromolecules 1995, 28, 1721−1723. (b) Wang, J.-S.; Matyjaszewski,
K. J. Am. Chem. Soc. 1995, 117, 5614−5615.
(13) (a) Nishikata, T.; Noda, Y.; Fujimoto, R.; Sakashita, T. J. Am.
Chem. Soc. 2013, 135, 16372−16375. (b) Nishikata, T.; Ishida, S.;
Fujimoto, R. Angew. Chem., Int. Ed. 2016, 55, 10008−10012. (c) Ishida,
S.; Takeuchi, K.; Taniyama, N.; Sunada, Y.; Nishikata, T. Angew. Chem.,
Int. Ed. 2017, 56, 11610−11614. (d) Noda, Y.; Nishikata, T. Chem.
Commun. 2017, 53, 5017−5019. (e) Gockel, S. N.; Buchanan, T. L.;
Hull, K. L. J. Am. Chem. Soc. 2018, 140, 58−61. (f) Murata, Y.;
Nishikata, T. Chem. - Eur. J. 2018, 24, 6354−6357.
́
́
̈
Author Contributions
‡Z.Z. and N.E.B. contributed equally.
Funding
Rice University, National Institutes of Health (R01 GM-
114609-01), National Science Foundation (CAREER:Su-
sChEM CHE- 1546097), Robert A. Welch Foundation (Grant
C-1764), and ACS-PRF (Grant 51707-DNI1).
(14) Clasby, M. C.; Chackalamannil, S.; Czarniecki, M.; Doller, D.;
Eagen, K.; Greenlee, W. J.; Lin, Y.; Tsai, H.; Xia, Y.; Ahn, H. S.; Agans-
Fantuzzi, J.; Boykow, G.; Chintala, M.; Foster, C.; Bryant, M.; Lau, J.
Bioorg. Med. Chem. Lett. 2006, 16, 1544−8.
(15) Yi, H.; Zhang, G.; Wang, H.; Huang, Z.; Wang, J.; Singh, A. K.;
Lei, A. Chem. Rev. 2017, 117, 9016−9085.
(16) Fagnou, K.; Lautens, M. Angew. Chem., Int. Ed. 2002, 41, 26−47.
(17) Jahn, U. Radicals in Transition Metal Catalyzed Reactions?
Transition Metal Catalyzed Radical Reactions? A Fruitful Interplay
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
The authors thank Dr. Andras Toro (Rice University & Baylor
College of Medicine) for helpful discussions.
■
̈
Anyway. In Radicals in Synthesis III; Heinrich, M., Gansauer, A., Eds.;
Springer: Berlin, 2012; pp 323−451.
(18) (a) Rodriguez, N.; Goossen, L. J. Chem. Soc. Rev. 2011, 40,
5030−48. (b) Wei, Y.; Hu, P.; Zhang, M.; Su, W. Chem. Rev. 2017, 117,
8864−8907.
REFERENCES
■
(1) Feuer, H.; Hooz, J., Methods of formation of the ether linkage. In
The Ether Linkage (1967); John Wiley & Sons, Ltd.,2010; pp 445−498.
(2) (a) Ley, S. V.; Thomas, A. W. Angew. Chem., Int. Ed. 2003, 42,
5400−5449. (b) Frlan, R.; Kikelj, D. Synthesis 2006, 2006, 2271−2285.
(3) For a recent review, see: (a) Fuhrmann, E.; Talbiersky, J. Org.
Process Res. Dev. 2005, 9, 206−211. For some representative examples,
see: (b) Masada, H.; Gotoh, H.; Ohkubo, M. Chem. Lett. 1991, 20,
1739−1742. (c) Shibatomi, K.; Kotozaki, M.; Sasaki, N.; Fujisawa, I.;
Iwasa, S. Chem. - Eur. J. 2015, 21, 14095−8.
E
Org. Lett. XXXX, XXX, XXX−XXX