RSC Advances
Communication
480600.pdf.
8 S. Sasatani, T. Miyazak, K. Maruoka and H. Yamamoto,
Tetrahedron Lett., 1983, 24, 4711.
9 (a) M. Sridhar, C. Narsaiah, J. Raveendra, G. K. Reddy, M. K.
K. Reddy and B. C. Ramanaiah, Tetrahedron Lett., 2011, 52,
4701; (b) G. L. Kad, M. Bhandari, J. Kaur, R. Rathee and
J. Singh, Green Chem., 2001, 3, 275; (c) H. Sharjhi and M.
H. Sarvari, J. Chem. Res., 2000, 1, 24.
Conclusions
A facile, solvent-assisted and room-temperature mechanochemical
synthetic pathway for the generation of ketoximes from ketones
has been explored. The robustness and versatility of this simple
process has been illustrated by performing the reaction on 20
different ketones with electron withdrawing (1–5), electron
donating (6 and 7), structurally active groups (8–15), multi-
functionalized (16 and 17) and aliphatic compounds (18–20).
Several competitive experiments have shown that electronic factors
(as induced by substituents on the aromatic backbone) can
influence the relative reactivity. In particular, electron withdrawing
substituents enhance, and electron donating groups reduce the
relative reactivity of a reactant, although more work is needed to
fully map out the role that such functionalities may play. The
simplicity of this synthetic process, coupled with the ease of
scalability and the use of environmentally benign reaction
conditions make this mechanochemical route for ketone–oxime
conversion a highly suitable, and environmentally less pollutive,
alternative to current synthetic methodologies.
10 J. Mokhtari, M. R. Naimi-Jamal, H. Hamzeali, M. G. Dekamin
and G. Kaupp, ChemSusChem, 2009, 2, 248.
11 A. Elmakssoudi, K. Abdelouahdi, M. Zahouily, J. Clark and
A. Solhy, Catal. Commun., 2012, 29, 53.
´
´
´
´
´
12 I. Damljanovic, M. Vukicevic and R. D. Vukicevic, Monatsh.
Chem., 2006, 137, 301.
¨
13 C. B. Aakeroy, A. S. Sinha, K. N. Epa, C. L. Spartz and J. Desper,
Chem. Commun., 2012, 48, 11289.
14 S. Prateeptongkum, I. Jovel, R. Jackstell, N. Vogl, C. Weckbecker
and M. Beller, Chem. Commun., 2009(15), 1990.
15 W.-K. Dong, S.-T. Zhang, Y.-X. Sun, M. Liu, Y.-J. Zhang and X.-
H. Gao, Z. Kristallogr. – New Cryst. Struct., 2012, 227, 99.
16 D. J. am Ende, D. H. B. Ripin and N. P. Weston, Thermochim.
Acta, 2004, 419, 83.
Acknowledgements
We are grateful for financial support from NSF (CHE-0957607).
17 S. R. Neufeldt and M. S. Sanford, Org. Lett., 2010, 12, 532.
18 R. E. Lyle and H. J. Troscianiec, J. Org. Chem., 1955, 20, 1757.
19 C. W. Glynn and M. M. Turnbull, Transition Met. Chem., 2002,
27, 822.
References
1 (a) S. L. James, C. J. Adams, C. Bolm, D. Braga, P. Collier,
20 G. Baddeley and E. Wrench, J. Chem. Soc., 1956, 4943.
ˇˇ´
T. Friscic, F. Grepioni, K. D. M. Harris, G. Hyett, W. Jones,
¨
21 E. A. Bruton, L. Brammer, F. C. Pigge, C. B. Aakeroy and D.
A. Krebs, J. Mack, L. Maini, A. G. Orpen, I. P. Parkin, W.
C. Shearouse, J. W. Steed and D. C. Waddell, Chem. Soc. Rev.,
ˇˇ ´
2012, 41, 413; (b) T. Friscic, J. Mater. Chem., 2010, 20, 7599.
ˇˇ´
2 (a) A. Delori, T. Friscic and W. Jones, CrystEngComm, 2012, 14,
S. Leinen, New J. Chem., 2003, 27, 1084.
22 N. S. Reddy, R. B. Reddy and K. Mukkanti, Tetrahedron Lett.,
2011, 52, 4888.
23 M. Carmack, O. H. Bullitt, G. R. Handrick, L. W. Kissinger and
I. Von, J. Am. Chem. Soc., 1946, 68, 1220.
24 S. Witek, J. Bielawski and A. Bielawska, Polish J. Chem., 1981, 55,
2589.
25 A. B. Zaitsev, E. Yu Schmidt, A. M. Mikhaleva, A. V. Afonin and
I. A. Ushakov, Chem. Heterocycl. Compd., 2005, 41, 722.
ˇˇ´
2350; (b) T. Friscic, Chem. Soc. Rev., 2012, 41, 3493.
3 S. Negi, M. Matsukura, M. Mizuno, K. Miyake and N. Minami,
Synthesis, 1996, 8, 991.
4 S. K. Dewan, R. Singh and A. Kumar, Arkivoc, 2006(ii), 41.
5 (a) P. R. Dave and F. Forshar, J. Org. Chem., 1996, 61, 8897; (b) F.
P. Ballistreni, E. Barbuzzi, G. A. Tomaselli and R. M. Toscano,
SynLett, 1996, 11, 1093.
This journal is ß The Royal Society of Chemistry 2013
RSC Adv., 2013, 3, 8168–8171 | 8171