DIHYDROPYRANO[3,2-c]CHROMENE
3579
159.5 ppm; IR (KBr, cmꢀ1): 3400, 3283, 3179, 2202, 1709, 1675, 1637, 1603, 1490,
1457, 1377, 1171, 1059, 957, 753; MS (EI, 70 eV) m=z (%) ¼ 330 (Mþ, 18), 249
(24), 240 (17), 239 (100), 121 (21). Anal. calcd. for C20H14N2O3: C, 72.72; H, 4.27;
N, 8.48%. Found: C, 72.80; H, 4.30; N, 8.50%.
2-Amino-4-(pyridin-2-yl)-3-cyano-4H,5H-pyrano[3,2-c]chromene-5-one
(Table 1, Entry 16). 1H NMR (DMSO-d6, 500 Hz): d 4.61 (s, 1H, CH), 6.26 (d,
J ¼ 3.0 Hz, 1H, Ar), 6.32–6.39 (m, 1H, Ar), 7.42–7.50 (m, 5H, NH2 & Ar), 7.52 (s,
1H, Ar), 7.69 (t, J ¼ 7.5 Hz, 1H, Ar), 7.85 (d, J ¼ 7.7 Hz, 1H, Ar) ppm; 13C NMR
(DMSO-d6, 125 Hz): d 30.6, 55.3, 101.5, 106.4, 110.6, 112.8, 116.6, 118.9, 122.3,
124.6, 133.0, 142.3, 144.5, 152.1, 153.8, 154.1, 158.7, 159.3 ppm; IR (KBr, cmꢀ1):
3368, 3282, 3169, 2201, 1704, 1672, 1604, 1376, 1268, 1171, 1111, 1056, 957, 757;
MS (EI, 70 eV) m=z (%) ¼ 317 (Mþ, 0.2), 306 (60), 278 (100), 239 (54), 158 (41),
121 (67), 92 (13), 63 (11). Anal. calcd. for C18H11N3O3: C, 68.14; H, 3.49; N,
13.24%. Found: C, 68.20; H, 3.54; N, 13.35%.
2-Amino-4-(2,5-dimethoxyphenyl)-3-cyano-4H,5H-pyrano[3,2-c]chromene-
5-one (Table 1, Entry 17). 1H NMR (DMSO-d6, 500 Hz): d 3.63 (s, 3H, CH3), 3.64
(s, 3H, CH3), 4.64 (s, 1H, CH), 6.66 (d, J ¼ 2.3 Hz, 1H, Ar), 6.75-6.79 (m, 1H, Ar),
6.90 (d, J ¼ 8.8 Hz, 1H, Ar), 7.25 (s, 2H, NH2), 7.41-7.49 (m, 2H, Ar), 7.67 (t,
J ¼ 7.7 Hz, 1H, Ar), 7.89 (d, J ¼ 7.7 Hz, 1H, Ar) ppm; 13C NMR (DMSO-d6,
125 Hz): d 32.6, 55.2, 56.4, 56.8, 103.1, 112.2, 112.9, 113.1, 115.7, 116.4, 119.2,
122.2, 124.5, 131.9, 132.6, 151.5, 152.0, 153.1, 153.9, 158.5, 159.4 ppm; IR (KBr,
cmꢀ1): 3403, 3322, 3192, 2195, 1708, 1672, 1605, 1501, 1380, 1224, 1054, 959, 620;
MS (EI, 70 eV) m=z (%) ¼ 376 (Mþ, 23), 361 (14), 345 (42), 279 (100), 239 (26),
215 (13), 121 (24). Anal. calcd. for C21H16N2O5: C, 67.82; H, 4.28; N, 7.44%. Found:
C, 67.92; H, 4.36; N, 7.55%.
ACKNOWLEDGMENT
We are thankful to the University of Sistan and Baluchestan Research Council
for the partial support of this research.
REFERENCES
1. (a) Do¨mling, A.; Ugi, I. Multicomponent reactions with isocyanides. Angew. Chem., Int.
Ed. 2000, 39, 3168–3210; (b) Bienayme, H.; Hulme, C.; Oddon, G.; Schmitt, P. Maximiz-
ing synthetic efficiency: Multi-component transformations lead the way. Chem. Eur. J.
2000, 6, 3321–3329; (c) Zhu, J.; Bienayme, H. Multicomponent Reactions; Wiley-VCH:
Weinheim, 2005; (d) Pirrung, M. C. Molecular Diversity and Combinatorial Chemistry:
Principles and Applications; Elsevier: London, 2004.
2. (a) Tietze, L. F. Domino reactions in organic synthesis. Chem. Rev. 1996, 96, 115–136; (b)
Armstrong, R. W.; Combs, A. P.; Tempest, P. A.; Brown, S. D.; Keating, T. A.
Multiple-component condensation strategies for combinatorial library synthesis. Acc.
Chem. Res. 1996, 29, 123–131; (c) Tietze, L.-F.; Brasche, G.; Gericke, K.-M. Domino
Reactions in Organic Synthesis; Wiley-VCH: Weinheim, 2006.
3. Ballini, R. Eco-friendly Synthesis of Fine Chemicals; RCS: Cambridge, 2009.