866
J.-L. Zhu et al.
LETTER
(10) For characterization of 3, see: Fringuelli, F.; Girotti, R.;
Pizzo, F.; Vaccaro, L. Org. Lett. 2006, 8, 2487.
(11) The endo stereochemistry of 5 was assigned on the basis of
2D NOESY experiments as well as the coupling constant of
the C-1 signal on the 13C NMR spectrum (δ = 43.6 ppm,
3JP–C = 0 Hz), see: Defacqz, N.; Touillaux, R.; Tinant, B.;
Declercq, J.-P.; Peeters, D.; Marchand-Brynaert, J. J. Chem.
Soc., Perkin Trans. 2 1977, 1965.
(12) Krawczyk, H.; Albrecht, L. Synthesis 2005, 2887.
(13) Compound 6 was found to be extremely air-sensitive and
decomposed quickly upon usual workup and purification.
Only the IR, 31P (δ = –115.4 ppm) and 1H NMR spectra of
the crude products were obtained. For the instability of
similar type of phosphines, see: Lasne, M. C.; Ripoll, J. L.;
Thuillier, A. J. Chem. Soc., Perkin Trans. 1 1988, 99.
(14) (a) House, H. O. In Modern Synthetic Reaction, 2nd ed.;
W. A. Benjamin, Inc: New York, 1972, 492–628. (b) Carey,
F. A.; Sundberg, R. J. In Advanced Organic Chemistry, 4th
ed., Part B; Plenum Press: New York, 2000, 13–15.
(15) Nasser, J.; About-Jaudet, E.; Collignon, N. Phosphorus,
Sulfur Silicon Relat. Elem. 1990, 171.
make our procedure to be unique to previously reported
dephosphonylation methods. Moreover, the convenient
preparation of a variety of primary alcohols from readily
accessed α,α-dialkyl β-phosphonyl esters in a controllable
fashion has further underscored the value of the protocol.
Acknowledgment
Financial support from NSC in Taiwan (ROC) are greatly acknowl-
edged.
References and Notes
(1) Savignac, P.; Iorga, B. In Modern Phosphonate Chemistry;
CPR Press: London, 2003, 217-375.
(2) Liao, C. C.; Zhu, J. L. J. Org. Chem. 2009, 74, 7873.
(3) For characterization of 2, see: Driver, T. G.; Franz, A. K.;
Woerpel, K. A. J. Am. Chem. Soc. 2002, 124, 6524.
(4) We previously observed that treatment of 1 with DIBAL-H
in toluene or Li(t-BuO)3AlH in THF did not cause the
dephosphonylation but only afforded the phosphono
aldehyde.
(16) Stritzke, K.; Schulz, S.; Nishida, R. Eur. J. Org. Chem. 2002,
3884.
(17) Such solvent effect was not observed for other substrates.
(18) Formation of 2 (Table 1, Entry 4) as a Typical Procedure
for the LiAlH4-Mediated Reductive Dephosphonylation
To a stirred suspension of LiAlH4 (95%, 169 mg, 4.23
mmol) in dry CH2Cl2 (5 mL) and THF (5 mL) precooled at
0 °C in an ice bath, a solution of 1 (213 mg, 0.705 mmol) in
CH2Cl2–THF (5 mL, v/v = 1:1) was added dropwise in 2 min
via a syringe under a nitrogen atmosphere. The ice bath was
then removed and stirring was continued for an additional 2
h at r.t. The reaction mixture was recooled in an ice bath and
cautiously quenched with 5% NaOH aq solution (2 mL). The
resulting pale grey suspension was diluted with CH2Cl2 (30
mL) and successively washed with H2O (2 × 8 mL) and brine
(10 mL), dried over Na2SO4, filtered, and concentrated under
reduced pressure. The crude residue was purified by flash
chromatography on silica gel (hexane–EtOAc = 5:1) to
afford 66 mg (75%) of 2 with the NMR spectral data
agreeing well with the literature.3 1H NMR (400 MHz,
CDCl3): δ = 6.15 (dd, J = 5.7, 3.0 Hz, 1 H), 5.96 (dd, J = 5.7,
2.9 Hz, 1 H), 3.40 (dd, J = 10.4, 6.5 Hz, 1 H), 3.26 (dd,
J = 10.4, 8.9 Hz, 1 H), 2.93 (br s, 1 H), 2.81(br s, 1 H), 2.34–
2.25 (m, 1 H), 1.82 (ddd, J = 11.6, 9.2, 3.9 Hz, 1 H), 1.45
(dm, J = 8.2 Hz, 1 H), 1.27 (br d, J = 8.6 Hz, 2 H), 0.53 (ddd,
J = 11.6, 4.4, 2.6 Hz, 1 H). 13C NMR (100 MHz, CDCl3):
δ = 137.5, 132.1, 66.5, 49.5, 43.6, 42.2, 41.7, 28.8.
(5) For examples on synthetic application of racemic 2, see:
(a) Smith, C. D.; Gavrilyuk, J. I.; Lough, A. L.; Batey, R. A.
J. Org. Chem. 2010, 75, 702. (b) Harned, A. M.; Mukherjee,
S.; Flynn, D. L.; Hanson, P. R. Org. Lett. 2003, 5, 15.
(c) Chavan, S. P.; Sharma, A. K. Tetrahedron Lett. 2001, 42,
4923. (d) Rawal, V. H.; Singh, S. P.; Dufour, C.; Michoud,
C. J. Org. Chem. 1993, 58, 7718. (e) Janssen, A. J. M.;
Klunder, A. J. H.; Zwanenburg, B. Tetrahedron 1991, 47,
5513.
(6) (a) Cabioch, J. L.; Pellerin, B.; Denis, J. M. Phosphorus,
Sulfur Silicon Relat. Elem. 1989, 27. (b) Katti, K. V.;
Pillarsetty, N.; Raghuraman, K. Top. Curr. Chem. 2003,
229, 121. (c) Stulz, E.; Maue, M.; Scott, S. M.; Mann, B. E.;
Sanders, J. K. M. New J. Chem. 2004, 28, 1066; and
references cited therein.
(7) Denmark, S. E.; Marlin, J. E. J. Org. Chem. 1991, 56, 1003.
(8) (a) Hong, J. E.; Shin, W. S.; Jang, W. B.; Oh, D. Y. J. Org.
Chem. 1996, 61, 2199. (b) Lee, S. Y.; Hong, J. E.; Jang, W.
B.; Oh, D. Y. Tetrahedron Lett. 1997, 38, 4567. (c) Lee, S.
Y.; Lee, C. W.; Oh, D. Y. J. Org. Chem. 1999, 64, 7017.
(d) Oh, S. Y.; Lee, C. W.; Oh, D. Y. J. Org. Chem. 2000, 65,
245. (e) For a synthetic application, see: Yang, H.; Hong, Y.
T.; Kim, S. Org. Lett. 2007, 9, 2281.
(9) Amedjkouh, M.; Grimaldi, J. Tetrahedron Lett. 2002, 43,
3761.
Synlett 2012, 23, 863–866
© Georg Thieme Verlag Stuttgart · New York