LETTER
Synthesis of Allenic (α,α-Difluoromethylene)phosphonates
289
(10) The propargylic methylene and terminal acetylenic protons of
8 were observed at 3.02 (tdd, J = 17.5, 5.8, 2.7 Hz) and 2.16
(t, J = 2.8 Hz), respectively, in the 1H NMR spectrum (300
MHz, CDCl3).
(11) The reaction between 4 and the aceteate 6d in DMF gave an
E/Z mixture (1:1) of ( , -difluoroallyl)phosphonates i as
major products:6a
In summary, a facile preparation of novel allenic ( , -di-
fluoromethylene)phosphonates is achieved by CuBr-pro-
moted reaction of BrZnCF2PO3Et2 with readily available
propargylic substrates.
Acknowledgement
OAc
This work was supported in part by Grant-in-Aid for Scientific Re-
search (C) from the Ministry of Education, Science, Sports and Cul-
ture of Japan. We wish to thank Miss Yuka Hosokawa for her skilful
assistance.
OAc
4
+
7
DMF
H
CF2PO3Et2
6d
i
References and Notes
Scheme 5
(1) Blackburn, G. M. Chem. Ind. 1981, 134. Blackburn, G. M.;
Kent, D. E.; Kolmann, F. J. Chem. Soc. Perkin Trans. 1 1984,
1149.
(2) Butt, A. H.; Percy, J. M.; Spencer, N. J. Chem. Commun.
2000, 1691.
(3) Martin, S. F.; Dean, D. W.; Wagman, A. S. Tetrahedron Lett.
1992, 33, 1839. Berkowitz, D. B.; Eggen, M.; Shen, Q.; Sloss,
D. G. J. Org. Chem. 1993, 58, 6174. Berkowitz, D. B.; Shen,
Q.; Maeng, J. -H. Tetrahedron Lett. 1994, 35, 6445 and
references cited therein.
(4) (a) Sprague, L. G.; Burton, D. J. J. Org. Chem. 1989, 54, 613.
(b) Burton, D. J.; Yang, Z. -Y. Tetrahedron 1992, 48, 189 and
the references cited therein.
(12) All new compounds gave satisfactory spectroscopic (1H-,
19F-, 31P-, 13C NMR, MS and IR) and analytical data.
(13) Schuster, H. F.; Coppola, G. M., Allenes in Organic Synthesis;
A Wiley-Interscience: New York, 1984.
(14) Brandsma, L.; Verkruijsse, H. D. Synthesis of Acetylenes,
Allenes and Cumulenes; Elsevier: Amsterdam, 1981.
(15) The allenyl and methyl protons of 10 were observed at 5.10-
5.01 (m) and 1.87 (t with multiple small splits, J = 4.4 Hz); the
propargylic methylene and terminal methyl protons of 11
were observed at 2.96 (tdd, J = 17.7, 6.0, 2.6 Hz) and 1.81
(t, J = 2.6 Hz), respectively, in the 1H NMR spectrum (400
MHz, CDCl3) of a mixture of 10 and 11.
(5) Lequeux, T. P.; Percy, J. M. Synlett 1995, 361. Blades, K.;
Lapôtre, D.; Percy, J. M. Tetrahedron Lett. 1997, 38, 5895.
(6) (a) Yokomatsu, T.; Suemune, K.; Murano, T.; Shibuya. S. J.
Org. Chem. 1996, 61, 7207. (b) Yokomatsu, T.; Murano, T.;
Suemune, K.; Shibuya, S. Tetrahedron 1997, 53, 815.
(7) (a) Yokomatsu, T.; Abe, H.; Sato, M.; Suemune, K.; Kihara,
T.; Soeda, S.; Shimeno, H.; Shibuya, S. Bioorg. Med. Chem.
1998, 6, 2495. (b) Yokomatsu, T.; Murano, T.; Umesue, I.;
Soeda, S.; Shimeno, H.; Shibuya, S. Bioorg. Med. Chem. Lett.
1999, 9, 529. (c) Yokomatsu, T.; Hayakawa, Y.; Suemune, K.;
Kihara, T.; Soeda, S.; Shimeno, H.; Shibuya, S. Bioorg. Med.
Chem. Lett. 1999, 9, 2833 and references cited therein. (d)
Yokomatsu, T.; Yamagishi, T.; Suemune, K.; Abe, H.; Kihara,
T.; Soeda, S.; Shimeno, H.; Shibuya, S. Tetrahedron 2000, 56,
7099.
(8) (a) Shakespeare, W. C.; Bohacek, R. S.; Narula, S. S.;
Azimioara, M.D.; Yuan, R. W.; Dalgarno, D. C.; Madden, L.;
Botfield, M. C.; Holt, D. A. Bioorg. Med. Chem. Lett. 1999, 9,
3109. (b) Otaka, A.; Mitsuyama, E.; Kinoshita, T.; Tamamura,
H.; Fujii, N. J. Org. Chem. 2000, 65, 4888.
(9) Burton briefly described a reaction of propargyl chloride with
2 in THF in the presence of copper (I) bromide to give an
allene.4a However, the details of the reaction were not
disclosed.
(16) Typical experimental procedure for the synthesis of 5c:
Copper species 4 was generated in DMF (10 mL) from zinc
dust (650 mg, 10 mmol), diethyl bromodifluoromethyl-
phosphonate (2.67 g, 10 mmol), and copper (I) bromide
(1.43 g, 10 mmol) as described previously.6 To the solution of
4 thus generated in DMF was added a solution of 12c (1.0 g,
5 mmol) in DMF (10 mL) at room temperature. After being
stirred at room temperature for 12 h, water was added to
quench the reaction. The biphasic mixture was passed through
Celite, and extracted with Et2O. The extracts were washed
with brine, dried over MgSO4 and evaporated. The volatile
components of the residue were removed in vacuo (0.05
mmHg, 80 °C) to leave 5c (1.31 g, 98%) as an oil. 1H NMR
(400 MHz, CDCl3) 5.66-5.59 (1H, m), 5.51-5.43 (1H, m),
4.40-4.19 (4H, m), 2.51-2.35 (1H, m), 1.38 (6H, t, J = 7.0 Hz),
1.07 (6H, J = 6.8 Hz); 13C NMR (100 MHz, CDCl3) 204.28
(m), 115.88 (td, JCP = 221.5 Hz, JCF = 258.6 Hz), 104.51,
88.45 (dt, JCP = 15.8 Hz, JCF = 26.1 Hz), 64.55 (d, JCP = 8.9
Hz), 64.47 (d, JCP = 8.9 Hz), 27.63, 22.00, 21.94, 16.33 (d,
J
J
CP = 5.27 Hz); 31P NMR (162 MHz, CDCl3) 6.89 (t,
PF = 115.1 Hz); 19F NMR (376 MHz, CDCl3, relative to BTF)
42.52 (2F, dddd, JPF = 115.1 Hz, JHF = 11.7, 5.6, 5.6 Hz),
IR (film) 1971, 1273 cm-1. MS (EI) m/z 269 (M++1), 268
(M+). HRMS (EI) calcd for C11H19F2O3P (M+): 268.1040.
Observed: 268.1041.
Article Identifier:
1437-2096,E;2001,0,02,0287,0289,ftx,en;Y20200ST.pdf
Synlett 2001, No. 2, 287–289 ISSN 0936-5214 © Thieme Stuttgart · New York