Communication
ChemComm
8 (a) K. He, T. Zhang, S. Zhang, Z. Sun, Y. Zhang, Y. Yuan and X. Jia,
Org. Lett., 2019, 21, 5030; (b) K. He, P. Li, S. Zhang, Q. Chen, H. Ji,
Y. Yuan and X. Jia, Chem. Commun., 2018, 54, 13232; (c) X. Jia, P. Li,
Y. Shao, Y. Yuan, H. Ji, W. Hou, X. Liu and X. Zhang, Green Chem.,
2017, 19, 5568.
9 For reviews of functionalization involving THIQs, see: (a) C.-Y.
Huang, H. Kang, J. Li and C.-J. Li, J. Org. Chem., 2019, 84, 12705;
(b) S. A. Girard, T. Knauber and C.-J. Li, Angew. Chem., Int. Ed., 2014,
53, 74; (c) C. Liu, H. Zhang, W. Shi and A. Lei, Chem. Rev., 2011,
111, 1780; (d) C. S. Yeung and V. M. Dong, Chem. Rev., 2011,
111, 1215.
10 Selected examples functionalization of THIQs: (a) W. Xie, B. Gong,
S. Ning, N. Liu, Z. Zhang, X. Che, L. Zheng and J. Xiang, Synlett,
2019, 2077; (b) M. Odachowski, M. F. Greaney and N. J. Turner, ACS
Catal., 2018, 8, 10032; (c) G. Kibriya, A. K. Bagdi and A. Hajra, J. Org.
Chem., 2018, 83, 10619; (d) M. R. Patil, N. P. Dedhia, A. R. Kapdi and
A. V. Kumar, J. Org. Chem., 2018, 83, 4477; (e) G. Oss, S. D. de Vos,
K. N. H. Luc, J. B. Harper and T. V. Nguyen, J. Org. Chem., 2018,
83, 1000; ( f ) B. Dutta, V. Sharma, N. Sassu, Y. Dang, C. Weerakkody,
J. Macharia, R. Miao, A. R. Howell and S. L. Suib, Green Chem., 2017,
19, 5350; (g) Z. Xie, X. Zan, S. Sun, X. Pan and L. Liu, Org. Lett., 2016,
18, 3944; (h) G.-Q. Xu, C.-G. Li, M.-Q. Liu, J. Cao, Y.-C. Luo and
P.-F. Xu, Chem. Commun., 2016, 52, 1190; (i) H. Wang, X. Li, F. Wu
and B. Wan, Tetrahedron Lett., 2012, 53, 681.
11 TBN initiated reactions: (a) X.-F. Wu, J. Schranck, H. Neumann and
M. Beller, Chem. Commun., 2011, 47, 12462; (b) X. Ma and Q. Song,
Org. Lett., 2019, 21, 7375; (c) Y. He, Z. Zheng, Y. Liu, J. Qiao, X. Zhang
and X. Fan, Org. Lett., 2019, 21, 1676; (d) B. Kilpatrick, M. Heller and
S. Arns, Chem. Commun., 2013, 49, 514; (e) P. Chaudhary, S. Gupta,
N. Muniyappan, S. Sabiahb and J. Kandasamy, Green Chem., 2016,
18, 2323; ( f ) X.-X. Peng, Y.-J. Deng, X.-L. Yang, L. Zhang, W. Yu and
B. Han, Org. Lett., 2014, 16, 4650; (g) T. Taniguchi, Y. Sugiura,
T. Hatta, A. Yajima and H. Ishibashi, Chem. Commun., 2013,
49, 2198; (h) Y.-F. Liang, X. Li, X. Wang, Y. Yan, P. Feng and
N. Jiao, ACS Catal., 2015, 5, 1956; (i) T. Shen, Y.-Z. Yuan and
N. Jiao, Chem. Commun., 2014, 50, 554; ( j) S. Maity, T. Naveen,
U. Sharma and D. Maiti, Org. Lett., 2013, 15, 3384.
Notes and references
1 For reviews of transition-metal enabled C–H bond activation, see:
(a) R. Shang, L. Ilies and E. Nakamura, Chem. Rev., 2017, 117, 9086;
(b) C. Cheng and J. F. Hartwig, Chem. Rev., 2015, 115, 8946;
(c) T. W. Lyons and M. S. Sanford, Chem. Rev., 2010, 110, 1147;
(d) D. Alberico, M. E. Scott and M. Lautens, Chem. Rev., 2007,
107, 174.
2 Selected reviews of radical C–H bond functionalization: (a) H. Wang,
X. Gao, Z. Lv, T. Abdelilah and A. Lei, Chem. Rev., 2019, 119, 6769;
(b) J. C. K. Chu and T. Rovis, Angew. Chem., Int. Ed., 2018, 57, 62;
(c) H. Yi, G. Zhang, H. Wang, Z. Huang, J. Wang, A. K. Singh and
A. Lei, Chem. Rev., 2017, 117, 9016; (d) Y.-F. Liang and N. Jiao, Acc.
Chem. Res., 2017, 50, 1640.
3 Recent progress of radical sp3 C–H bond activation: (a) J. B. Roque,
¨
Y. Kuroda, J. Jurczyk, L.-P. Xu, J. S. Ham, L. T. Gottemann,
C. A. Roberts, D. Adpressa, J. Saurı, L. A. Joyce, D. G. Musaev,
´
C. S. Yeung and R. Sarpong, ACS Catal., 2020, 10, 2929;
(b) E. E. Stache, V. Kottisch and B. P. Fors, J. Am. Chem. Soc.,
2020, 142, 4581; (c) A. F. Prusinowski, R. K. Twumasi,
E. A. Wappes and D. A. Nagib, J. Am. Chem. Soc., 2020, 142, 5429;
(d) F. Wang, X. Zhang, Y. He and X. Fan, J. Org. Chem., 2020,
85, 2220; (e) D. Anand, Z. Sun and L. Zhou, Org. Lett., 2020,
22, 2371; ( f ) H. Wang, Y. Li, Q. Lu, M. Yu, X. Bai, S. Wang,
H. Cong, H. Zhang and A. Lei, ACS Catal., 2019, 9, 1888;
(g) S. Liu, T. Shen, Z. Luo and Z.-Q. Liu, Chem. Commun., 2019,
55, 4027; (h) S. Tang, L. Zeng and A. Lei, J. Am. Chem. Soc., 2018,
140, 13128; (i) X. Wang, X. Qiu, J. Wei, J. Liu, S. Song, W. Wang and
N. Jiao, Org. Lett., 2018, 20, 2632; ( j) H. Wang, D. Zhang and
C. Bolm, Angew. Chem., Int. Ed., 2018, 57, 5863; (k) H. Yu, Z. Li
and C. Bolm, Org. Lett., 2018, 20, 2076; (l) P.-F. Yuan, Q.-B. Zhang,
X.-L. Jin, W.-L. Lei, L.-Z. Wu and Q. Liu, Green Chem., 2018, 20, 5464;
(m) X.-Q. Hu, J.-R. Chen and W.-J. Xiao, Angew. Chem., Int. Ed., 2017,
56, 1960.
4 (a) A. F. Prusinowski, R. K. Twumasi, E. A. Wappes and D. A. Nagib,
J. Am. Chem. Soc., 2020, 142, 5429; (b) A. N. Herron, D. Liu, G. Xia
and J.-Q. Yu, J. Am. Chem. Soc., 2020, 142, 2766; (c) P. Guo, Y. Li,
X.-G. Zhang, J.-F. Han, Y. Yu, J. Zhu and K.-Y. Ye, Org. Lett., 2020,
22, 3601; (d) D. Kurandina, D. Yadagiri, M. Rivas, A. Kavun,
P. Chuentragool, K. Hayama and V. Gevorgyan, J. Am. Chem. Soc.,
2019, 141, 8104; (e) B. Xu and U. K. Tambar, ACS Catal., 2019,
9, 4627; ( f ) M. Wang, L. Huan and C. Zhu, Org. Lett., 2019, 21, 821;
(g) Z.-Y. Ma, L.-N. Guo, Y. You, F. Yang, M. Hu and X.-H. Duan, Org.
Lett., 2019, 21, 5500; (h) B. J. Groendyke, A. Modak and S. P. Cook,
J. Org. Chem., 2019, 84, 13073; (i) X. Hu, G. Zhang, F. Bu, L. Nie and
A. Lei, ACS Catal., 2018, 8, 9370; ( j) X. Shen, J.-J. Zhao and S. Yu,
Org. Lett., 2018, 20, 5523; (k) L. Wang, Y. Xia, K. Bergander and
A. Studer, Org. Lett., 2018, 20, 5817; (l) D.-F. Chen, J. C. K. Chu and
T. Rovis, J. Am. Chem. Soc., 2017, 139, 14897.
12 Oxidative Wittig reaction: Y. Zhu, S. Lv, X. Ma, L. Zhang, L. Luo and
X. Jia, Asian J. Org. Chem., 2016, 5, 617.
13 It is worth noting that the desired product 2 and the side-product 3
could not be isolated by column chromatography and TLC, there-
fore, a mixture of 2 and 3 was obtained. The corresponding ratio was
determined by 1H NMR.
14 The aromaticity of the products might provide a strong driving force
to the oxidation of 3,4-C–H bonds.
5 (a) H. Togo, Advanced Free Radical Reactions for Organic Synthesis,
Elsevier, 2004; (b) P. Renaud and M. P. Sibi, Radicals in Organic
Synthesis, Wiley-VCH Verlag GmbH, 2001.
6 For BDEs, see: Y.-R. Luo, Handbook of Bond Dissociation Energy in 15 Q. Sun, Y.-Y. Zhang, J. Sun, Y. Han, X. Jia and C.-G. Yan, Org. Lett.,
Organic Compounds, CRC Press, Boca Raton, FL, 2002. 2018, 20, 987.
7 X. Jia, Y. Zhu, Y. Yuan, X. Zhang, S. Lu¨, L. Zhang and L. Luo, ACS 16 A review for copper-catalysed atom transfer radical process:
Catal., 2016, 6, 6033.
A. J. Clark, Chem. Soc. Rev., 2002, 31, 1.
This journal is © The Royal Society of Chemistry 2021
3350 | Chem. Commun., 2021, 57, 3347–3350