advantage of being a parallel, combinatorial process, where
the number of sequences prepared far exceeds the number
of steps in the synthesis. Spatial delivery, on the other hand,
is an inherently serial process. The most complex DNA
microarrays known (>105 probe sites) are commercially
prepared using photolithography.
operate on such mismatches with greatly reduced efficiency
and rate. When there is a perfect match between probe and
target site (X & Y ≡ complements), reaction with a
triphosphate occurs (J & K ≡ complements, in ligation R )
DNA chain (deoxyoligonucleotide 5′-triphosphate), in primer
extension R ) H or OH (nucleotide 5′-triphosphate)). The
covalent attachment of J to the probe permits stringent
washing steps that minimize background in imaging of the
probe site. While equilibrium binding may permit the
formation of end-mismatched duplexes, they are not attached
and do not contribute to background.
DNA microarrays are most commonly used for hybridiza-
tion to analyte nucleic acid (DNA or RNA). With a plethora
of oligonucleotide probes on an array and a high-complexity
target significantly longer than the probes, a number of
different hybrids (perfect match and single-base mismatch)
might be formed at each probe site. The difference in their
stability may be quite small, depending on the location of
the mismatch, with mismatches at the end of the probe being
hardest to discriminate against. Analysis of the hybridization
of target to the chip is primarily based on perfect match
hybrids, so signal from mismatches could confound the
analysis. Interestingly, chips prepared in situ by photo-
lithography with a high density of probe sequences within
each probe site have an unusual, nonclassical binding
behavior (as compared to hybridization events in solution)
that makes the discrimination against mismatches greater than
might be expected.11 This is indeed fortunate, as low cycle
yields (∼90%) in commercial DNA chip production lead to
impure probe sequences that could further confound the
analysis.12 Thus, better methods for fabrication and use of
DNA arrays are needed to give high discrimination against
false signals.
Primer extension methods for DNA arrays have been
reported by other groups13 as well as our own APEX effort.14
Ligation methods are also known.15 Both require a free 3′-
hydroxyl. Conventional DNA synthesis, as used in current
photolithographic array preparation, attaches probes to the
array at their 3′-end, preventing ligation or primer extension
from being performed. Ligation/primer extension methods
have therefore been limited to arrays made by spotting.
Methods to synthesize DNA starting from the 5′-end are
known.16 We earlier reported efforts to develop new methods
for reverse photochemical DNA synthesis.17
Approaches to increase the fidelity of photolithographic
DNA microarray preparation have focused on improved
photochemically removable protecting groups. Pfleiderer
developed the NPPOC (nitrophenylpropyloxycarbonyl) group
that is deprotected by a â-elimination reaction18 (Scheme
Approaches to increase the fidelity of microarray analysis
are based on enzymatic processing (Scheme 1). They exploit
(10) Singh-Gasson, S.; Green, R. D.; Yue, Y.; Nelson, C.; Blattner, F.;
Sussman, M. R.; Cerrina, F. Nat. Biotechnol. 1999, 17, 974-978. LeProust,
E.; Pellois, J. P.; Yu, P.; Zhang, H.; Gao, X.; Srivannavit, O.; Gulari, E.;
Zhou, X. J. Comb. Chem. 2000, 2, 349.
(11) Forman, J. E.; Walton, I. D.; Stern, D.; Rava, R. P.; Trulson, M. O.
ACS Symp. Ser. 1998, 682, 206-228.
Scheme 1. Enzymatic Processing on DNA Microarrays
(12) Pirrung, M. C.; Bradley, J.-C. J. Org. Chem. 1995, 60, 6270. Pirrung,
M. C.; Fallon, L.; McGall, G. J. Org. Chem. 1998, 63, 241.
(13) Broude, N. E., Sano, T.; Smith, C. L.; Cantor, C. R. Proc. Natl.
Acad. Sci. U.S.A. 1994, 91, 3072-3076. Livshits, M. A.; Forentive, V. L.;
Mirzabekov, A. D. J. Biomol. Struct. Dynam. 1994, 11, 783-795. Dubiley,
S.; Kirillov, E.; Mirzabekov, A. Nucleic Acids Res. 1999, 27, e19. Tonisson,
N.; Kurg, A.; Kaasik, K.; Lohmussaar, E.; Metspalu, A. Clin. Chem. Lab.
Med. 2000, 38, 165-70.
(14) Shumaker, J. M.; Metspalu, A.; Caskey, C. T. Laboratory Protocol
for Mutation Detection Landegren, U., Ed.; Oxford University Press:
Oxford, U.K., 1996; pp 93-95. Tollett, J. J.; Kurg, A.; Shah, A.; Roa, B.
B.; Richards, C. S.; Nye, S. H.; Pirrung, M.; Metspalu, A.; Shumaker, J.
M. Am. J. Hum. Gen. 1997, 61 (Suppl. S), 1322. Kurg, A.; Tollett, J. J.;
Shah, A.; Roa, B. B.; Richards, C. S.; Nye, S. H.; Pirrung, M.; Metspalu,
A.; Shumaker, J. M. Am. J. Hum. Gen. 1997, 61 (Suppl. S), 68. Pirrung,
M. C.; Connors, R. V.; Montague-Smith, M. P.; Odenbaugh, A. L.; Walcott,
N. G.; Tollett, J. J. J. Am. Chem. Soc. 2000, 122, 1873.
(15) Drmanac, R.; Drmanac, S.; Strezoska, Z.; Pauneska, T.; Labat, I.;
Zeremski, M.; Snoddy, J.; Funkhouser, W. K.; Koop, B.; Hood, L.;
Crkvenjakov, R. Science 1993, 260, 1649-1652. Gunderson, K. L.; Huang,
X. C.; Morris, M. S.; Lipshutz, R. J.; Lockhart, D. J.; Chee, M. S. Genome
Res. 1998, 8, 1142-1153. Drmanac, S.; Kita, D.; Labat, I.; Hauser, B.;
Schmidt, C.; Burczak, J. D.; Drmanac, R. Nat. Biotechnol. 1998, 16, 54-
8.
(16) Horne, D. A.; Dervan, P. B. J. Am. Chem. Soc. 1990, 112, 2435-
2437. Roble, J.; Pedroso, E.; Grandas, A. Nucleic Acids Res. 1995, 23,
4151. Shchepinov, M.; Case-Green, S.; Southern, E. Nucleic Acids Res.
1997, 25, 1155. Hudson, R.; Robidoux, S.; Damha, M. Tetrahedron Lett.
1998, 39, 1299.
(17) Pirrung, M. C.; Fallon, L.; Lever, D. C.; Shuey, S. W. J. Org. Chem.
1996, 61, 2129.
(18) Giegrich, H.; Eisele-Buhler, S.; Hermann, C.; Kvasyuk, E.; Charuba-
la, R.; Pfleiderer, W. Nucleosides Nucleotides 1998, 17, 1987. Hasan, A.;
Stengele, K.-P.; Gegrich, H.; Cornwell, P.; Isham, K.; Sachleben, R.;
Pfleiderer, W. Foote, R. Tetrahedron 1997, 53, 4247.
the fact that enzymes that replicate and join DNA have
evolved to maintain a very low error rate. While hybridiza-
tion can occur to give an imperfect match at the reaction
site (X & Y * complements), polymerase and ligase enzymes
1106
Org. Lett., Vol. 3, No. 8, 2001