4
Tetrahedron
12. Song, X. R.; Han, Y. P.; Qiu, Y. F.; Qiu, Z. H.; Liu, X. Y.; Xu, P.
F.; Liang Y. M. Chem. Eur. J. 2014, 20, 12046–12050.
3. Conclusion
13. (a) Chernov, G. N.; Levin, V. V.; Kokorekin, V. A.; Struchkova,
M. I.; Dilman, A. D. Adv. Synth. Catal. 2017, 359; (b)Raasch, M.
S. J. Org. Chem.1980, 45,856-867.
14. Okamoto, N.; Sueda, T.; Yanada, R. J. Org. Chem. 2014, 79,
9854-9859.
15. Larisa, V. P.; Igor, P. C.; Evgeny, V. T.; Vitalij, D. S.; Ludmila, P.
O.; Olga, D. Z.; Georgy, A. N. J. Fluorine Chem. 2015, 178,142-
153.
16. (a)Bhuvaneswari, S.; Jeganmohan, M.; Cheng, C. H. Chem. Asian.
J., 2010, 5, 141-146; (b) Egi, M.; Yamaguchi, Y.; Fujiwara, N.;
Akai, S. Org. Lett. 2010, 39, 1867-1870.
17. Typical procedure: To a mixture of propargyl alcohol 1 (0.2
mmol) in dioxane (1 mL), Bi(OTf)3 (0.03 mmol) and nucleophile
2 (0.22 mmol) were added. The mixture was stirred at refluxing
temperature until 1 disappeared monitored by TLC. Then the
reaction was quenched by saturated NaHCO3 solution and
extracted with ethyl acetate. The combined organic phases were
washed with brine, dried over anhydrous Na2SO4 and concentrated
under reduced pressure to give a residue. Finally the residue was
purified through column chromatography on silica gel (200-300
mesh) with hexane/EtOAc as eluent to afford the products 3a-3i,
4b-4d, and 4g-4q. 3-(benzylthio)-1-phenylpropan-1-one (3a): 92%
yield; yellow oil; 1H NMR (500 MHz, Chloroform-d) δ 7.92 –
7.86 (m, 2H), 7.56 (t, J = 7.5 Hz, 1H), 7.45 (t, J = 7.5 Hz, 2H),
7.35 – 7.29 (m, 4H), 7.24 (s, 1H), 3.77 (s, 2H), 3.17 (t, J = 7.5 Hz,
2H), 2.84 (t, J = 7.5 Hz, 2H). 13C NMR (125 MHz, Chloroform-d)
δ 198.30 , 138.38 ,136.60 , 133.23 , 128.87 , 128.64 , 128.58 ,
128.03 , 127.08 , 38.75 , 36.92 , 25.88 . IR (KBr, cm-1) 3726,
3647, 3470, 2957, 2918, 1683, 1596, 1560, 1492, 1448, 1378,
1019, 979, 748, 695, 491.
In summary, we developed a Bi(OTf)3-catalyzed preparation
of acyclic β-carbonyl sulfides17 from 3-aryl propargyl alcohols
and thiols, which probably proceeded by tandem Meyer-Schuster
rearrangement of propargyl alcohols, followed by the
nucleophilic attack of thiols on α,β-unsaturated ketones. The
starting material was easy to obtain, the experimental process
was simple. Few by-products, high yields, and 100% atomic
utilization rate make it a potentially attractive method for the
synthesis of acyclic β-carbonyl sulfides. Reactions with
propargyl alcohols as nucleophiles were currently underway in
our lab and will be published in due course.
Acknowledgments
Financial supports from National Natural Science Foundation
of China (Grant No. 21502117), Shanghai Municipal Education
Commission (Plateau Discipline Construction Program ), and the
collaboration Innovation Foundation of Shanghai Institute of
Technology, China (No.XTCX2016-3). We are also grateful to
Prof. Gang Zhao and Prof. Guanjun Wang for technical
assistance.
Supplementary data
Supplementary data associated with this article can be
References and notes
1.
(a)Castagnolo, D.; Lauder, K.; Toscani, A.; Qi, Y.; Korah, K.
Angew. Chem. Int. Ed. 2018, 57, 5803-5807; (b)Ulendeeva, A. D.;
Baeva, L. A.; Valiullin, O. R.; Nikitina, T. S.; Arslanova, D. D.;
Spirikhin, L. V. Pet. Chem. 2006, 46, 122-126. (c)Reich, H. J.;
Jasperse, C. P.; Renga, J. M. J. Org. Chem. 1987 , 18. 2981-2988.
(d)Trost, B. M. Chem. Rev. 1978, 78, 363-382.
2.
3.
Reinaldo, R. V.; Etelvino, J. H. B.; Liliana, M.; Blanka, W.
Tetrahedron: Asymmetry. 1999, 10, 3219–3227
(a) Park, H. B.; Kim, Y. J.; Park, J. S.; Yang, H. O.; Lee, K. R.;
Kwon, H. C. Nat. Prod. 2011,74, 2309-2312. (b)Li, L. Y.; Li
D. H.; Luan, Y. P.; Gu, Q. Q.; Zhu, T. J. Nat. Prod. 2012, 75, 920-
927.
4.
(a)Ncrenberg, S.; Kiske, C.; Reichardt, B.; Andelfinger, V.;
Pfeiffer, A.; Schmidts, F. J. Agric. Food Chem. 2017, 65, 8913–
8922. (b) Takoi, K.; Degueil, M.; Shinkaruk, S.; Thibon, C.;
Maeda, K.; Ito, K.; Bennetau, B.; Dubourdieu, D.; Tominaga, T. J.
Agric. Food Chem. 2009, 57, 2493–2502;
5. (a) Lin, Y. M.; Lu, G. P.; Cai, C.; Yi, W. B. RSC Adv. 2015, 5,
27107-27111. (b)Abaee, M. S.; Cheraghi, S.; Navidipoor, S.;
Mojtahedi, M. M.; Forghani, S. Tetrahedron Lett. 2012, 43, 4405-
4408; (c) Kitanosono, T.; Sakai, M.; Ueno, M.; Kobayashi, Shū.
Org. Biomol. Chem. 2012, 10, 7134-7147; (d) Garg ,S. K.; Kumar,
R.; Chakraborti, A. K. Tetrahedron Lett. 2005, 46, 1721-1724; (e)
Habib, F.;Nasser, I.; Abbas, A. J. Synlett. 2005 , 299 -303; (f)
Gorthey, L. N.; Vairamani, M.; Djerassi, C. J. Org. Chem. 1985,
50,4173-4182.
6.
(a) Yadav, J. S.; Reddyb ,V. S.; Baishya, G. Org. Chem., 2003, 68,
7098-7100. (b) Ranu, B. C.;Mandal, T. Synlett. 2007, 6, 925-928
.
7.
8.
9.
Gill, N. S.; James, K. B.; Lions, F.; Potts, K. T. J. Am. Chem. Soc.
1952, 74, 4923-4928.
Wen, Z. K.; Liu, X. H.; Liu, Y. F., Chao, J. B. Org. Lett. 2017, 19,
5798-5801.
Swain, S. P. ; Chou, Y. L.; Hou, D. R. Adv. Synth. Catal. 2015,
357, 2644–2650.
10. Tao, R. H.; Yin, Y.; Duan, Y. B.; Sun, Y. X.; Sun, Y.; Cheng, F.
K.; Pan, J. P.; Lu, C.; Wang, Y. Tetrahedron. 2017, 73, 1762-
1768.
11. Shi, T. D.; Guo, X.; Teng, S. H.; Hu, W. H. Chem. Commun.
2015, 51, 15204–15207.