2612
P. Lacombe et al. / Bioorg. Med. Chem. Lett. 16 (2006) 2608–2612
the equipotent analog (22), while the introduction of the
larger chlorine substituent (21) resulted in a dramatic
loss in potency. Furthermore, these substitutions failed
to block the oxidative cleavage of the molecule. Howev-
er, the appendage of a methyl group directly onto the
benzylic position (by using MeLi in THF at À78 ꢁC in-
stead of step (c) in Scheme 2) provided us with the de-
sired metabolic stability with minimal loss in HWB
potency.
References and notes
1. (a) Yuasa, K.; Kanoh, Y.; Okumura, K.; Omori, K. Eur. J.
Biochem. 2001, 268, 168; (b) Soderling, S. H.; Beavo, J. A.
Curr. Opin. Cell Biol. 2000, 12, 174; (c) Claveau, D.; Chen,
S. L.; O’Keefe, S.; Zaller, D. M.; Styhler, A.; Liu, S.;
Huang, Z.; Nicholson, D. W.; Mancini, J. A. J. Pharmacol.
Exp. Ther. 2004, 310(2), 752.
2. (a) Jones, T. R.; McAuliffe, M.; McFarlane, C. S.; Piechuta,
H.; Macdonald, D.; Rodger, I. W. Can. J. Physiol.
Pharmacol. 1998, 76, 210; (b) Danahay, H.; Broadley, K.
J. Clin. Exp. Allergy 1998, 28(4), 513.
Having resolved the metabolic stability issue with this
type of tether, a series of amide derivatives were pre-
pared (Table 5). As exemplified by the acetamide deriv-
ative 24, smaller groups led to less potent compounds.
By reintroducing bulkier groups, like 4-fluoro-benzoyl
(i.e., derivative 26), we were able to regain the desired
potency on the enzyme as well as in the HWB assay.
3. Burnouf, C.; Pruniaux, M.-P.; Szilagyi, C. M. Ann. Rep.
Med. Chem. 1998, 33, 91.
4. (a) Hughes, B.; Howat, D.; Lisle, H.; Holbrook, M.; James,
T.; Gozzard, N.; Blease, K.; Hughes, P.; Kingaby, R.;
Warrellow, G.; Alexander, R.; Head, J.; Boyd, E.; Eaton,
M.; Perry, M.; Wales, M.; Smith, B.; Owens, R.; Catterall,
C.; Lumb, S.; Russell, A.; Allen, R.; Merriman, M.;
Bloxham, D.; Higgs, G. Br. J. Pharmacol. 1996, 118,
1183; (b) Perry, M. J.; O’Connell, J.; Walker, C.; Crabbe,
T.; Baldock, D.; Russell, A.; Lumb, S.; Huang, Z.; Howat,
D.; Allen, R.; Merriman, M.; Walls, J.; Daniel, T.; Hughes,
B.; Laliberte, F.; Higgs, G. A.; Owens, R. J. Cell Biochem.
Biophys. 1998, 29, 113; (c) Christensen, S. B.; Guider, A.;
Forster, C. J.; Gleason, J. G.; Bender, P. E.; Karpinski, J.
M., ; DeWolf, W. E., Jr.; Barnette, M. S.; Underwood, D.
C.; Griswold, D. E.; Cieslinski, L. B.; Burman, M.;
Bochnowicz, S.; Osborn, R. R.; Manning, C. D.; Grous,
M.; Hillegas, L. M.; Bartus, J. O.; Ryan, M. D.; Eggleston,
D. S.; Haltiwanger, R. C.; Torphy, T. J. J. Med. Chem.
1998, 41, 821; (d) Xu, R. X.; Hassell, A. M.; Vanderwall,
D.; Lambert, M. H.; Holmes, W. D.; Luther, M. A.;
Rocque, W. J.; Milburn, M. V.; Zhao, Y.; Ke, H.; Nolte, R.
T. Science 2000, 288, 1822.
The pharmacokinetic profile of compound 26 in rats and
in squirrel monkey was established. It showed a half-life
of 2 and 7 h, respectively, following iv administration, as
well as good oral bioavailability when dosed in 60%
PEG 200/water (67% with Cmax = 2.7 lM and 98% with
Cmax = 0.9 lM, respectively). The in vivo efficacy of 26
was then evaluated in the ovalbumin-induced broncho-
constriction assay in conscious guinea pig.8 Following
this protocol, the amide 26 showed 74% inhibition at
30 lg/kg when administered interperitoneally (ip). In
comparison, CDP-8404a,b a prototypical PDE IV inhib-
itor, which has shown efficacy in animal models as well
as in human, exhibited a 55% inhibition when dosed ip
at 1 mg/kg in this model.
´
5. Macdonald, D.; Mastracchio, A.; Perrier, H.; Dube, D.;
Gallant, M.; Lacombe, P.; Desch enes, D.; Roy, B.;
The racemic mixture 26 was resolved9 and the more po-
tent enantiomer (28) exhibited a 2-fold improvement in
intrinsic potency on PDE IV. Introduction of polar sub-
stituent (i.e., 29) or heterocycle (i.e., 30) also led to an
increase in whole blood activity.
ˆ
Scheigetz, J.; Bateman, K.; Li, C.; Trimble, L. A.; Day,
S.; Chauret, N.; Nicoll-Griffith, D. A.; Silva, J. M.; Huang,
´
Z.; Lalibert e, F.; Liu, S.; Ethier, D.; Pon, D.; Muise, E.;
Boulet, L.; Chan, C. C.; Styler, A.; Charleson, S.; Mancini,
J.; Masson, P.; Claveau, D.; Nicholson, D.; Turner, M.;
Young, R. N.; Girard, Y. Bioorg. Med. Chem. Lett. 2005,
15, 5241.
In conclusion, we have demonstrated that the intro-
duction of nitrogen containing tethers to substituted
8-arylquinolines can lead to potent inhibitors of the
PDE IV enzyme. Moreover, blocking the metabolic
degradation of those compounds by introducing a
substituent at the benzylic position gave us the desired
pharmacokinetic profile in rats and in squirrel
monkeys. Subsequently, a prototypical example of this
series, compound 26 was found to be active in an
ovalbumin-induced bronchoconstriction assay in con-
scious guinea pig and is currently been evaluated to
determine its emetic threshold.
´
6. Laliberte, F.; Han, Y.; Govindarajan, A.; Giroux, A.; Liu,
S.; Bobechko, B.; Lario, P.; Bartlett, A.; Gorseth, E.;
Gresser, M.; Huang, Z. Biochemistry 2000, 39, 6449.
7. Brideau, C.; Van Staden, C.; Styhler, A.; Rodger, I. W.;
Chan, C.-C. Br. J. Pharmacol. 1999, 126, 979.
´
8. (a) Ortiz, J. L.; Valles, J. M.; Marti-Cabrera, M.; Cortijo,
J.; Morcillo, E. J. Naunyn-Schmiedeberg’s Arch. Pharmacol.
1996, 353, 200; (b) Jones, T. R.; Masson, P. Prostaglandins
1985, 29, 799.
9. Separation of the two enantiomers was performed by chiral
HPLC (Chiralpak AD 5 · 50 cm, 20 l, 60 ml/min, 40%
hexanes/60% ethanol, rt = 55 and 79 min.).