G. Bouchoux et al.
[11] S. Nacson, A. G. Harrison. Energy transfer in collisional activation.
Energy dependence of the fragmentation of n-alkylbenzene molecular
ions. Int. J. Mass Spectrom. Ion Processes 1985, 63(2–3), 325–337.
[12] S. A. McLuckey, L. Sallans, R. B. Cody, R. C. Burnier, S. Verma, B. S. Freiser,
R. G. Cooks. Energy-resolved tandem and fourier-transform mass
spectrometry. Int. J. Mass Spectrom. Ion Phys. 1982, 44(3–4), 215–229.
[13] S. A. McLuckey, C. E. D. Ouwerkerk, A. J. H. Boerboom, P. G. Kistemaker.
The effect of collision energy in polyatomic ion/neutral target collisions
over a range of 10–6000 eV. Int. J. Mass Spectrom. Ion Processes 1984,
59(1), 85–101.
[14] F. Muntean, P. B. Armentrout. Modeling kinetic shifts and competition
in threshold collision induced dissociation. Case study: n-butylbenzene
cation dissociation. J. Phys. Chem. A 2003, 107(38), 7413–7422.
[15] A. I. Fernandez, A. A. Viggiano, J. Troe. Two-channel dissociation of
chemically and thermally activated n-butylbenzene cations. J. Phys.
Chem. A 2006, 110(27), 8467–8476.
K. Raghavachari, V. Rassolov, J. A. Pople. Gaussian-3 theory using
reduced Moller-Plesset order. J. Chem. Phys. 1999, 110(10), 4703–4709.
[26] a) Y. Kamiya, T. Miyakoshi. Synthesis of urushiol components and
analysis of urushi sap from Rhus vernicifera. J. Oleo Sci. 2001,
50(11), 865–874. b) Y. Kamiya, W. Saito, T. Miyakoshi. Synthesis and
identification of Laccol components from Rhus succedanea lacquer
sap. J. Oleo Sci. 2002, 51(7), 473–483.
[27] a) N. Maras, S. Polanc, M. Koc var. Microwave-assisted methylation of
phenols with tetramethylammonium chloride in the presence of
K2CO3 or Cs2CO3. Tetrahedron 2008, 64(51), 11618–11624. b) N.
Kataoka, Q. Shelby, J. P. Stambuli, J. F. Hartwig. Air stable, sterically
hindered ferrocenyl dialkylphosphines for palladium-catalyzed C–C,
C–N, and C–O bond-forming cross-couplings. J. Org. Chem. 2002,
67(16), 5553–5566. c) A. Krasovskiy, C. Duplais, B. H. Lipshutz.
Zn-Mediated, Pd-Catalyzed Cross-Couplings in Water at Room
Temperature Without Prior Formation of Organozinc Reagents.
J. Am. Chem. Soc. 2009, 131, 15592–15593.
[28] a) F. Alonso, P. Candela, C. Gomez, M. Yus. The NiCl2-Li-arene (cat.)
combination as reducing system, part 9: Catalytic hydrogenation of
organic compounds using the NiCl2-Li-(Naphthalene or polymer-
supported naphthalene) (cat.) combination. Adv. Synth. Catal.
2003, 345(1–2), 275–279. b) J. Tateiwa, E. Hayama, T. Nishimura, S.
Uemura. Metal cation-exchanged montmorillonite (Mn + Àmont)-
catalysed aromatic alkylation with aldehydes and ketones. J. Chem.
Soc. Perkin Trans. 1 1997, 13, 1923–1928. P. E. Cross, R. P. Dickinson,
J. E. G. Kemp, P. R. Leeming, L. G. Pullman. Compounds with gastric
antisecretory activity. 1. Phenoxyalkylamines. J. Med. Chem. 1977,
20(10), 1317–1323. M. A. Elsohly, M. A. Elsohly, D. A. Benigni,
E. S. Watson, T. L. Little Jr. Analogs of poison Ivy urushiol – Synthesis
and biological-activity of disubstituted normal alkylbenzenes. J. Med.
Chem. 1986, 29(5), 606–611.
[29] a) R. B. Bates, T. J. Siahaan, K. Suvannachut. A new rearrangement of
alkoxybenzyl anions. J. Org. Chem. 1990, 55(4), 1328–1334. b) I. Ujváry,
G. Mikite. A practical synthesis of 3-n-propylphenol, a component of
tsetse fly attractant blends. Org. Process Res. Dev. 2003, 7(4), 585–587.
c) H. P. Tyman, S. K. Mehet. The separation and synthesis of lipidic
1,2-and 1,3-diols from natural phenolic lipids for the complexation
and recovery of boron. Chem. Phys. Lipids 2003, 126(2), 177–199.
K. Takaishi, Y. Alen, K. Kawazu. Synthesis and antinematodal
activity of 3-n-alkylphenols. Bio. Biotechnol. Biochem. 2004, 68(11),
2398–2400. J. H. P. Tyman, S. J. A. Iddenten. The synthesis of oxime
reagents from natural and semi-synthetic phenolic lipid and alkanoic
acid resources for the solvent recovery of copper(II). J. Chem. Technol.
Biotechnol. 2005, 80(11), 1319–1328.
[16] R. C. Dunbar, R. Klein. Spectroscopy of radical cations. The McLafferty
rearrangement product in fragmentation of n-butylbenzene and
2-phenylethanol ions. J. Am. Chem. Soc. 1977, 99(11), 3744–3746.
[17] R. G. McLoughlin, J. D. Morrison, J. C. Traeger. A photoionization
study of the [C7H8].+ ion formed from some monosubstituted alkyl
benzenes. Org. Mass Spectrom. 1978, 13(8), 483–485.
[18] P. C. Burgers, J. K. Terlouw, K. Levsen. Gaseous [C7H8].+ ions: [methylene
cyclohexadiene].+ a stable species in the gas phase. Org. Mass
Spectrom. 1982, 17(6), 295–298.
[19] M. Rabrenović, A. G. Brenton, T. Ast. A study of [C7H8].+ and [C7H8]2+
ions formed from different precursor molecules. Org. Mass Spectrom.
1983, 18(12), 587–595.
[20] R. G. McLoughlin, J. D. Morrison, J. C. Traeger. Photoionization of the
C-1-C-4 monosubstituted alkyl benzenes: thermochemistry of
[C7H7]+ and [C8H9]+ formation. Org. Mass Spectrom. 1979, 14(1),
104–108.
[21] J. Troe, V. G. Ushakov, A. A. Viggiano. On the model dependence of
kinetic shifts in unimolecular reactions: the dissociation of the
cations of benzene and n-butylbenzene. J. Phys. Chem. A 2006,
110(4), 1491–1499.
[22] S. Halbert, G. Bouchoux. Isomerization and dissociation of
n-butylbenzene radical cation. J. Phys. Chem. A 2012, 116(4),
1307–1315.
[23] Gaussian 03, Revision B. 04, Gaussian, Inc., Pittsburgh, PA, 2003.
[24] a) K. E. Riley, B. T. Op’t Holt, K. M. Merz Jr. Critical assessment of the
performance of density functional methods for several atomic and
molecular properties. J. Chem. Theor. Comput. 2007, 3(2), 407–433.
b) S. F. Sousa, P. A. Fernandes, M. J. Ramos. General performance of
density functionals. J. Phys. Chem. A 2007, 111(42), 10439–10452.
c) J. Tirado-Rives, W. L. Jorgensen. Performance of B3LYP density
functional methodsfor a large set of organic molecules. J. Chem. Theor.
Comput. 2008, 4(2), 297–306. d) L. Rao, H. Ke, G. Fu, X. Xu, Y. Yan.
Performance of several density functional theory methods on
describing hydrogen bond interactions. J. Chem. Theor. Comput.
2009, 5(1), 86–96.
[25] a) L. A. Curtiss, K. Raghavachari, P. C. Redfern, V. Rassolov, J. A. Pople.
Gaussian-3 (G3) theory for molecules containing first and second-
row atoms. J. Chem. Phys. 1998, 109(18), 7764–7776. b) A. Baboul,
L. A. Curtiss, P. C. Redfern, K. Raghavachari. Gaussian-3 theory using
density functional geometries and zero-point energies. J. Chem.
Phys. 1999, 110(16), 7650–7657. c) L. A. Curtiss, P. C. Redfern,
[30] E. P. Hunter, S. G. Lias. Standard reference database no. 69. NIST
Chemistry Webbook; National Institute of Standards and Technology:
[31] J. Cioslowski. A new population analysis based on atomic polar
tensors. J. Am. Chem. Soc. 1989, 22, 8333–8336.
[32] G. Bouchoux. Heats of formation and protonation thermochemistry
of gaseous benzaldehyde, tropone and quinone methides. Chem.
Phys. Lett. 2010, 495, 192–197.
[33] A.-S. Le Hô, M. Regert, O. Marescot, C. Duhamel, J. Langlois,
T. Miyakoshi, C. Genty, M. Sablier. Molecular criteria for discriminating
museum Asian lacquerware from different vegetal origins by pyrolysis
gas chromatography/mass spectrometry. Anal. Chim. Acta 2012,
710, 9–16.
wileyonlinelibrary.com/journal/jms
Copyright © 2012 John Wiley & Sons, Ltd.
J. Mass. Spectrom. 2012, 47, 539–546