synthesis of the specific target by appending the final E-ring.2
Methods for building up the requisite gem-disubstituted
tetracyclic [ABCD]-framework 4 usually involve a Pictet-
Spengler/Bischler-Napieralski cyclization,8 a Michael-type
alkylation of the so-called “Wenkert enamine”,9 or an
annulation reaction of a dihydro-â-carboline derivative.10
Our approach to the Vinca alkaloids was guided by a long
standing interest in the intramolecular [3+2]-cycloaddition
of carbonyl ylide dipoles.11 The generation of onium ylides
by a transition-metal-promoted cyclization reaction has
emerged in recent years as an important and efficient method
for the assembly of ring systems that are difficult to prepare
by other means.12,13 In earlier work from our laboratory, we
had described the formation of push-pull dipoles from the
Rh(II)-catalyzed reaction of R-diazo amides and noted that
a smooth intramolecular 1,3-dipolar cycloaddition occurred
across alkenyl π-bonds to provide novel pentacyclic com-
pounds in good yield and in a stereocontrolled fashion.14
Herein we report a concise synthesis of (()-3H-epivincamine
(3), first isolated by Cava in 19686 according to the plan
outlined in Scheme 1. The key intermediate 6 is readily
assembled by a Rh(II)-catalyzed cyclization/dipolar cycload-
dition sequence starting from R-diazo indolo amide 5.
Reductive ring opening of the resulting cycloadduct 6 is then
marshalled to create the trans-pentacyclic skeleton found in
(()-3H-epivincamine (3). Finally, a base-induced ring
contraction is exploited to complete the synthesis of 3. The
Scheme 1
successful completion of this synthesis demonstrates the
utility of our cascade methodology for the construction of
complex indole-containing natural products.
For the initial investigations into the tandem process, we
chose to examine the reactivity under Rh(II) catalysis
conditions of R-diazo amide 11, a test substrate. Compound
11 was readily prepared by treating carboline 9 with acetic
anhydride under refluxing conditions followed by reaction
of the resulting N-acetyl carboline 10 with sodium hydride
and ethyl 2-diazomalonyl chloride15 (Scheme 2). Heating
(6) Cava, M. P.; Tjoa, S. S.; Ahmed, Q. A.; Da Rocha, A. I. J. Org
Chem. 1968, 33, 1055.
(7) (a) Hugel, G.; Le´vy, J. Tetrahedron 1984, 40, 1067. (b) Hakam, K.;
Thielmann, M.; Thielmann, T.; Winterfeldt, E. Tetrahedron 1987, 43, 2035.
(c) Ge´nin, D.; Andriamialisoa, R. Z.; Langlois, N.; Langlois, Y. J. Org.
Chem. 1987, 52, 353. (d) Kaufman, M. D.; Grieco, P. A. J. Org Chem.
1994, 59, 7197. (e) Wenkert, E.; Hudlicky, T.; Showalter, H. D. J. Am.
Chem. Soc. 1978, 100, 4893.
Scheme 2
(8) (a) Herrmann, J. L.; Cregge, R. J.; Richman, J. E.; Semmelhack, C.
L.; Schlessinger, R. H. J. Am. Chem. Soc. 1974, 96, 3702. (b) Pfa¨ffli, P.;
Oppolzer, W.; Wenger, R.; Hauth, H. HelV. Chim. Acta 1975, 58, 1131. (c)
Herrmann, J. L.; Cregge, R. J.; Richman, J. E.; Kieczykowski, G. R.;
Normandin, S. N.; Quesada, M. L.; Semmelhack, C. L.; Poss, A. J.;
Schlessinger, R. H. J. Am. Chem. Soc. 1979, 101, 1540. (d) Langlois, Y.;
Pouilhe´s, A.; Ge´nin, D.; Andriamialisoa, R. Z.; Langlois, N. Tetrahedron
1983, 39, 3755. (e) Lounasmaa, M.; Tolvanen, A. J. Org. Chem. 1990, 55,
4044.
(9) (a) Rossey, G.; Wick, A.; Wenkert, E. J. Org. Chem. 1982, 47, 4745.
(b) Wenkert, E.; Wickberg, B. J. Am. Chem. Soc. 1965, 87, 1580. (c) Szabo,
L.; Sapi, J.; Kalaus, G.; Argay, G.; Kalman, A.; Baitz-Gacs, E.; Tamas, J.;
Szantay, C. Tetrahedron 1983, 39, 3737. (d) Nemes, A.; Czibula, L.; Visky,
G.; Farkas, M.; Kreidl, J. Heterocycles 1991, 32, 2329.
(10) (a) Oppolzer, W.; Hauth, H.; Pfa¨ffli, P.; Wenger, R. HelV. Chim.
Acta 1977, 60, 1801. (b) Hugel, G.; Le´vy, J.; Le Men, J. C. R. Acad. Sci.
1972, 274, 1350. (c) Danieli, B.; Lesma, G.; Palmisano, G. J. Chem. Soc.,
Chem Commun. 1981, 908. (d) Magnus, P.; Pappalardo, P.; Southwell, I.
Tetrahedron 1986, 42, 3215.
(11) For some leading references, see: Padwa, A. HelV. Chim. Acta 2005,
88, 1357.
(12) (a) Padwa, A.; Hornbuckle, S. F. Chem. ReV. 1991, 91, 263. (b)
Padwa, A.; Weingarten, M. D. Chem. ReV. 1996, 96, 223. (c) Padwa, A.
Pure Appl. Chem. 2004, 76, 1933.
(13) (a) Hodgson, D. M.; LeStrat, F.; Avery, T. D.; Donohue, A. C.;
Bru¨kl, T. J. Org. Chem. 2004, 69, 8796. (b) Hodgson, D. M.; LeStrat, F.
Chem. Commun. 2004, 822. (c) Chiu, P. Pure Appl. Chem. 2005, 77, 1183.
(d) Chen, B.; Ko, R. Y. Y.; Yuen, M. S. M.; Cheng, K.-F.; Chiu, P. J. Org.
Chem. 2003, 68, 4195. (e) Chiu, P.; Chen, P. Org. Lett. 2001, 3, 1721. (f)
Graening, T.; Bette, V.; Neudo¨rfl, J.; Lex, J.; Schmalz, H. G. Org. Lett.
2005, 7, 4317.
(14) (a) Padwa, A.; Price, A. T. J. Org. Chem. 1995, 60, 6258. (b) Padwa,
A.; Price, A. T. J. Org. Chem. 1998, 63, 556. (c) Padwa, A.; Lynch, S. M;
Mej´ıa-Oneto, J. M.; Zhang, H. J. Org. Chem. 2005, 70, 2206. (d) Mej´ıa-
Oneto, J. M.; Padwa, A. Org. Lett. 2006, 8, 3275.
compound 11 with catalytic Rh2(OAc)4 generates a rhodium
carbenoid intermediate which undergoes cyclization with the
neighboring amido carbonyl group to form a transient
carbonyl ylide dipole 12. Subsequent bimolecular trapping
of the dipole with various common dipolarophiles led to the
expected [3+2]-cycloadducts.12 Table 1 illustrates the scope
of the cycloaddition by showcasing the reaction with a variety
of commercially available dipolarophiles. In a typical experi-
ment, heating a sample of 11 with catalytic amounts of Rh2-
(OAc)4 in benzene at 80 °C in the presence of an equivalent
(15) Marino, J. P.; Osterhout, M. H.; Price, A.; Sheehan, S. M.; Padwa,
A. Tetrahedron Lett. 1994, 35, 849.
3250
Org. Lett., Vol. 9, No. 17, 2007