990
H. Mikoshiba et al.
LETTER
should be noted that the original (3S)-chirality in alcohol
3 is completely retained on the chroman ring of 10. After
re-protections of the diol moiety as the acetonide and the
phenolic hydroxy group as the benzyl ether, the resulting
intermediate 1111 was subjected to oxidative cleavage to
furnish (R)-aldehyde 1 in enantiopure form and 83% over-
all yield from alcohol 3; mp 50-52 °C; [ ]D +11.9 (CHCl3,
c = 1.66, 18 °C). The physical data were in agreement
References and Notes
(1) For asymmetric synthesis of vitamin E, see, e.g.: (a) Olson, L.;
Cheung, H.-C.; Morgan, K.; Saucy, G. J. Org. Chem. 1980,
45, 803. (b) Cohen, N.; Lopresti, R. J.; Saucy, G. J. Am. Chem.
Soc. 1979, 101, 6710.
(2) For selected asymmetric synthesis of (R)-chroman aldehyde 1
(or synthetic equivalents), see: (a) Tietze, L. F.; Görlitzer, J.
Synlett 1996, 1041. (b) Mizuguchi, E.; Achiwa, K. Synlett
1995, 1255. (c) Takano, S.; Yoshimitsu, T.; Ogasawara, K.
Synlett 1990, 451 (1990). (d) G. Solladie, G.; Moine, G. J. Am.
Chem. Soc. 1984, 106, 6097. (e) Takabe, K.; Okisaka, K.;
Uchiyama, Y.; Katagiri, T.; Yoda, H. Chem. Lett. 1985, 561.
(f) Fuganti, C.; Grasselli, P. J. Chem. Soc., Chem. Commun.
1982, 205. (g) Sakito, Y.; Suzukamo, G. Tetrahedron Lett.
1982, 23, 4953. (h) Cohen, N.;. Lopresti, R. J.; Neukom, C. J.
Org. Chem. 1981, 46, 2445. (i) Barner, R.; M. Schmid, M.
Helv. Chim. Acta 1979, 62, 2384.
(3) Mikoshiba, H.; Mikami, K.; Nakai, T. Heterocycles 2001, in
press.
(4) In fact, the reported synthetic method for the precursors of
bromide 6’ requires seven steps from 8: Smith, L. I.; Maullen,
C. W. J. Am. Chem. Soc. 1936, 58, 629.
1
with the literature values, and the H NMR spectral data
are also in accord with the reported ones.1b,12 LIS-NMR
2e,g
analysis using Eu(hfc)3 confirmed that aldehyde (S)-1
is enantiomerically pure.
OH
HO
O
b, c
a
O
(3S)-3
O
O
O
OH
OH
9
10
BnO
d, e
f
[ 2 ]
(S)-1
O
(5) Vinyl ketone 5: [ ]D +83.5° (CHCl3, c = 2.06, 19 °C);
1H NMR (CDCl3), 1.42 (s,3H), 1.47 (s, 3H), 3.96-4.37 (m,
2H), 4.63 (t, 1H), 5.86 (dd, 1H, J = 1.8, 11.6 Hz), 6.40 (dd, 1H,
J = 1.8, 17.4 Hz), 6.83 (dd, 1H, J = 11.6, 17.4 Hz).
(6) The attempted oxidation of the allylic alcohol with PCC
failed, while the oxidation with MnO2 gave ketone 5 in ca.
30% yield.
O
O
11
Scheme 2 Reagents: (a) Ce(NH4)2(NO3)6, MeCN (100%); (b) HCl,
aq. MeOH (96%); (c) H2, Pd/C, EtOH (100%); (d) Me2C(OMe)2, PT-
SA, Et2O (94%); (e) BnBr, K2CO3, DMF (99%); (f) H5IO6, aq. THF
(99%).
(7) Ketone 4: [ ]D +29.3° (CHCl3, c = 1.92, 20 °C); 1H NMR
(CDCl3), 1.37 (s, 3H), 1.47 (s, 3H), 2.17 (s, 6H), 2.20 (s,
3H), 2.83 (t, 4H, J = 3.0 Hz), 3.35 (s, 6H), 3.97 (dd, 1H,
J = 6.0, 6.8 Hz), 4.17 (dd, 1H, J = 6.8, 6.8 Hz), 4.43 (dd, 1H,
J = 6.0, 6.8 Hz).
In summary, we have developed a new, short synthetic
route to (R)-chroman aldehyde (1), a key chiral precursor
of vitamin E from commercially available trimethyl-p-hy-
droquinone and (R)-glycerladehyde acetonide. This syn-
thesis highlights the use of the Michael addition to
introduce the aromatic part into the chiral aliphatic frame-
work and the use of our methylation protocol to create the
crucial “quaternary” chirality in high diastereoselectivity.
Thus, this route seems to be attractive for the practical
asymmetric synthesis of vitamin E.
(8) The major isomer of alcohol 3: 1H NMR (CDCl3), 1.33 (s,
3H), 1.37 (s, 3H), 1.43 (s, 3H), 2.17 (s, 6H), 2.23 (s, 3H), 2.53-
3.00 (m 4H), 3.63 (s, 3H), 3.68 (s, 3H), 3.68 (s, 3H), 3.83-4.17
(m, 3H).
(9) Quinone 9: IR (neat), 1640 cm-1 (C=O); [ ]D +13.5° (CHCl3,
c = 0.56, 20 °C); 1H NMR (CDCl3), 1.27 (s, 3H), 1.33 (s,
3H), 1.40 (s, 3H), 1.43-1.80 (m, 2H), 1.97 (s, 6H), 2.03 (s,
3H), 2.17 (br, s, 1H), 2.37-2.83 (m, 2H), 3.77-4.10 (m, 3H).
(10) Diol 10: [ ]D 5.4° (MeOH, c = 0.88, 19 °C); 1H NMR
(DMSO-d6), 1.10 (s, 3H), 1.75 (t, 2H, J = 6.8 Hz), 2.00 (s,
3H), 2.03 (s, 3H), 2.06 (s, 3H), 2.27-2.73 (t, 2H, J = 6.8 Hz),
4.20-4.43 (m, 2H), 4.73-4.90 (m, 1H), 7.37 (s, 1H).
(11) Intermediate 11: mp, 105-107 °C; [ ]D +55.0° (CHCl3,
c = 0.39, 22 °C); 1H NMR (CDCl3), 1.20 (s, 3H), 1.37 (s,
3H), 1.47 (s, 3H), 1.87 (t, 2H, J = 6.8 Hz), 2.07 (s, 3H), 2.13
(s, 3H), 2.20 (s, 3H), 2.63 (t, 2H, J = 6.8 Hz), 3.87-4.33 (m,
3H), 4.07 (s, 2H), 7.27-7.57 (m, 5H).
(12) Aldehyde (S)-1: 1H NMR (CDCl3), 1.40 (s, 3H), 1.77 (t, 2H,
J = 6.8 Hz), 2.10 (s, 3H), 2.17 (s, 3H), 2.23 (s, 3H), 2.57 (t, 2H,
J = 6.8 Hz), 4.70 (s, 2H), 7.24-7.63 (m, 5H), 9.60 (s, 1H).
Article Identifier:
1437-2096,E;2001,0,SI,0989,0990,ftx,en;Y03601ST.pdf
Synlett 2001, SI, 989–990 ISSN 0936-5214 © Thieme Stuttgart · New York