Organic Letters
Letter
Chem. Commun. 1997, 2273. (f) Kusumoto, S.; Akiyama, M.; Nozaki,
K. J. Am. Chem. Soc. 2013, 135, 18726.
2016, 116, 10035. (c) Twilton, J.; Le, C.; Zhang, P.; Shaw, M. H.;
Evans, R. W.; MacMillan, D. W. C. Nat. Rev. Chem. 2017, 1, 0052.
(d) Kalyani, D.; McMurtrey, K. B.; Neufeldt, S. R.; Sanford, M. S. J.
Am. Chem. Soc. 2011, 133, 18566. (e) Ye, Y.; Sanford, M. S. J. Am.
Chem. Soc. 2012, 134, 9034. (f) Sahoo, B.; Hopkinson, M. N.; Glorius,
F. J. Am. Chem. Soc. 2013, 135, 5505. (g) Shu, X.; Zhang, M.; He, Y.;
Frei, H.; Toste, F. D. J. Am. Chem. Soc. 2014, 136, 5844. (h) Tarantino,
K. T.; Miller, D. C.; Callon, T. A.; Knowles, R. R. J. Am. Chem. Soc.
2015, 137, 6440. (i) Cheng, W.-M.; Shang, R.; Yu, H.-Z.; Fu, Y.
Chem.Eur. J. 2015, 21, 13191. (j) Ruhl, K. E.; Rovis, T. J. Am. Chem.
Soc. 2016, 138, 15527. (k) Niu, L.; Yi, H.; Wang, S.; Liu, T.; Liu, J.;
Lei, A. Nat. Commun. 2017, 8, 14226.
(13) For seminal reports about ternary hybrid catalysis comprised of
photoredox catalyst, organocatalyst, and metal catalyst, see: (a) Shaw,
M. H.; Shurtleff, V. W.; Terrett, J. A.; Cuthbertson, J. D.; MacMillan,
D. W. C. Science 2016, 352, 1304. (b) Zhang, X.; MacMillan, D. W. C.
J. Am. Chem. Soc. 2017, 139, 11353. (c) Le, C.; Liang, Y.; Evans, R. W.;
Li, X.; MacMillan, D. W. C. Nature 2017, 547, 79.
(14) (a) Qvortrup, K.; Rankic, D. A.; MacMillan, D. W. C. J. Am.
Chem. Soc. 2014, 136, 626. (b) Hager, D.; MacMillan, D. W. C. J. Am.
Chem. Soc. 2014, 136, 16986. (c) Cuthbertson, J. D.; MacMillan, D. W.
C. Nature 2015, 519, 74. (d) Jin, J.; MacMillan, D. W. C. Nature 2015,
525, 87. (e) Jeffrey, J. L.; Terrett, J. A.; MacMillan, D. W. C. Science
2015, 349, 1532. (f) Mukherjee, S.; Maji, B.; Tlahuext-Aca, A.; Glorius,
F. J. Am. Chem. Soc. 2016, 138, 16200. (g) Mukherjee, S.; Garza-
Sanchez, R. A.; Tlahuext-Aca, A.; Glorius, F. Angew. Chem., Int. Ed.
2017, 56, 14723. (h) Tanaka, H.; Sakai, K.; Kawamura, A.; Oisaki, K.;
(15) Electrochemical and photochemical studies support that sulfur-
centered radical species RS• would be generated from TPA via single
electron oxidation by the excited state of photoredox catalyst 7. See ref
8 for more details.
(3) (a) Nomura, K.; Saito, Y. J. Chem. Soc., Chem. Commun. 1988, 0,
161. (b) Maguire, J. A.; Boese, W. T.; Goldman, A. S. J. Am. Chem. Soc.
1989, 111, 7088. (c) Chowdhury, A. D.; Weding, N.; Julis, J.; Franke,
R.; Jackstell, R.; Beller, M. Angew. Chem., Int. Ed. 2014, 53, 6477.
(d) Chowdhury, A. D.; Julis, J.; Grabow, K.; Hannebauer, B.; Bentrup,
U.; Adam, M.; Franke, R.; Jackstell, R.; Beller, M. ChemSusChem 2015,
8, 323. (e) Liebau, F.; Braun, T.; Braun, B. J. Fluorine Chem. 2015, 180,
192. For other examples of CAD of hydrocarbons, see: (f) Kumar, A.;
Bhatti, T. M.; Goldman, A. S. Chem. Rev. 2017, 117, 12357.
(4) For recent reviews of photoredox catalysis in organic synthesis,
see: (a) Eckenhoff, W. T.; Eisenberg, R. Dalton Trans. 2012, 41,
13004. (b) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev.
2013, 113, 5322. (c) Reckenthaler, M.; Griesbeck, A. G. Adv. Synth.
̈
Catal. 2013, 355, 2727. (d) Xi, Y.; Yi, H.; Lei, A. Org. Biomol. Chem.
2013, 11, 2387. (e) Xuan, J.; Lu, L.-Q.; Chen, J.-R.; Xiao, W.-J. Eur. J.
Org. Chem. 2013, 2013, 6755. (f) Schultz, D. M.; Yoon, T. P. Science
2014, 343, 1239176. (g) Matsui, J. K.; Lang, S. B.; Heitz, D. R.;
Molander, G. A. ACS Catal. 2017, 7, 2563. For a review of dual
catalysts by merging photoredox catalysts and other catalysts, see:
(h) Hopkinson, M. N.; Sahoo, B.; Li, J.-L.; Glorius, F. Chem.Eur. J.
2014, 20, 3874. (i) Tzirakis, M. D.; Lykakis, I. N.; Orfanopoulos, M.
Chem. Soc. Rev. 2009, 38, 2609.
(5) Yin, Q.; Oestreich, M. Angew. Chem., Int. Ed. 2017, 56, 7716.
(6) (a) West, J. G.; Huang, D.; Sorensen, E. J. Nat. Commun. 2015, 6,
10093. (b) West, J. G.; Sorensen, E. J. Isr. J. Chem. 2017, 57, 259.
(7) He, K.-H.; Tan, F.-F.; Zhou, C.-Z.; Zhou, G.-J.; Yang, X.-L.; Li, Y.
Angew. Chem., Int. Ed. 2017, 56, 3080.
(8) Kato, S.; Saga, Y.; Kojima, M.; Fuse, H.; Matsunaga, S.; Fukatsu,
A.; Kondo, M.; Masaoka, S.; Kanai, M. J. Am. Chem. Soc. 2017, 139,
2204.
(16) (a) Han, Z.; Eisenberg, R. Acc. Chem. Res. 2014, 47, 2537.
(b) Osipova, E. S.; Belkova, N. V.; Epstein, L. M.; Filippov, O. A.;
Kirkina, V. A.; Titova, E. M.; Rossin, A.; Peruzzini, M.; Shubina, E. S.
Eur. J. Inorg. Chem. 2016, 2016, 1415. (c) Belkova, N. V.; Epstein, L.
M.; Filippov, O. A.; Shubina, E. S. Chem. Rev. 2016, 116, 8545.
(17) (a) Menezes da Silva, V. H.; Braga, A. A. C.; Cundari, T. R.
Organometallics 2016, 35, 3170. (b) Lin, B.-L.; Liu, L.; Fu, Y.; Luo, S.-
W.; Chen, Q.; Guo, Q.-X. Organometallics 2004, 23, 2114. (c) Tasker,
S. Z.; Standley, E. A.; Jamison, T. F. Nature 2014, 509, 299.
(18) (a) Gøgsig, T. M.; Kleimark, J.; Nilsson Lill, S. O.; Korsager, S.;
Lindhardt, A. T.; Norrby, P.-O.; Skrydstrup, T. J. Am. Chem. Soc. 2012,
134, 443. (b) Matsubara, R.; Jamison, T. F. J. Am. Chem. Soc. 2010,
132, 6880. (c) Matsubara, R.; Gutierrez, A. C.; Jamison, T. F. J. Am.
Chem. Soc. 2011, 133, 19020. (d) Tasker, S. Z.; Gutierrez, A. C.;
Jamison, T. F. Angew. Chem., Int. Ed. 2014, 53, 1858.
(9) (a) Fukuzumi, S.; Kotani, H.; Ohkubo, K.; Ogo, S.; Tkachenko,
N. V.; Lemmetyinen, H. J. Am. Chem. Soc. 2004, 126, 1600.
(b) Fukuzumi, S.; Ohkubo, K. Chem. Sci. 2013, 4, 561. (c) Fukuzumi,
S.; Ohkubo, K.; Suenobu, T. Acc. Chem. Res. 2014, 47, 1455.
(d) Nicewicz, D. A.; Nguyen, T. M. ACS Catal. 2014, 4, 355.
(e) Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075.
(f) Margrey, K. A.; Nicewicz, D. A. Acc. Chem. Res. 2016, 49, 1997.
(10) (a) Catalysis without Precious Metals; Bullock, R. M., Ed.;
Wiley−VCH: Weinheim, Germany, 2010. (b) Chirik, P.; Morris, R.
Acc. Chem. Res. 2015, 48, 2495. (c) Dunetz, J. R.; Fandrick, D.;
Federsel, H.-J. Org. Process Res. Dev. 2015, 19, 1325.
(11) For recent representative reports of hybrid catalysis comprised
of a photoredox catalyst and a nickel catalyst, see: (a) Tellis, J. C.;
Primer, D. N.; Molander, G. A. Science 2014, 345, 433. (b) Zuo, Z.;
Ahneman, D. T.; Chu, L.; Terrett, J. A.; Doyle, A. G.; MacMillan, D.
W. C. Science 2014, 345, 437. (c) Corce, V.; Chamoreau, L.-M.; Derat,
E.; Goddard, J.-P.; Ollivier, C.; Fensterbank, L. Angew. Chem., Int. Ed.
2015, 54, 11414. (d) Tasker, S. Z.; Jamison, T. F. J. Am. Chem. Soc.
2015, 137, 9531. (e) Xuan, J.; Zeng, T.-T.; Chen, J.-R.; Lu, L.-Q.; Xiao,
W.-J. Chem.Eur. J. 2015, 21, 4962. (f) Joe, C. L.; Doyle, A. G. Angew.
Chem., Int. Ed. 2016, 55, 4040. (g) Luo, J.; Zhang, J. ACS Catal. 2016,
6, 873. (h) Tellis, J. C.; Kelly, C. B.; Primer, D. N.; Jouffroy, M.; Patel,
N. R.; Molander, G. A. Acc. Chem. Res. 2016, 49, 1429. (i) Nakajima,
K.; Nojima, S.; Nishibayashi, Y. Angew. Chem., Int. Ed. 2016, 55, 14106.
(j) Heitz, D. R.; Tellis, J. C.; Molander, G. A. J. Am. Chem. Soc. 2016,
138, 12715. (k) Shields, B. J.; Doyle, A. G. J. Am. Chem. Soc. 2016, 138,
12719. (l) Knauber, T.; Chandrasekaran, R.; Tucker, J. W.; Chen, J.
M.; Reese, M.; Rankic, D. A.; Sach, N.; Helal, C. Org. Lett. 2017, 19,
6566. (m) Primer, D. N.; Molander, G. A. J. Am. Chem. Soc. 2017, 139,
9847. (n) Deng, H.-P.; Fan, X.-Z.; Chen, Z.-H.; Xu, Q.-H.; Wu, J. J.
Am. Chem. Soc. 2017, 139, 13579. (o) Kang, B.; Hong, S. H. Chem. Sci.
2017, 8, 6613. (p) Yu, X.-Y.; Zhou, Q.-Q.; Wang, P.-Z.; Liao, C.-M.;
Chen, J.-R.; Xiao, W.-J. Org. Lett. 2018, 20, 421.
(12) For recent representative reports of hybrid catalysis comprised
of a photoredox catalyst and a transition-metal catalyst other than
nickel catalysts, see: (a) Levin, M. D.; Kim, S.; Toste, F. D. ACS Cent.
Sci. 2016, 2, 293. (b) Skubi, K. L.; Blum, T. R.; Yoon, T. P. Chem. Rev.
D
Org. Lett. XXXX, XXX, XXX−XXX