6 L. Weber, Curr. Med. Chem., 2002, 9, 2085–2093.
7 S. Booth, P. H. H. Hermkens, H. C. J. Ottenheijm and D. C. Rees,
Tetrahedron, 1998, 54, 15385–15443.
8 P. J. Edwards and A. I. Morrell, Curr. Opin. Drug Discovery Dev., 2002,
5, 594–605.
9 B. Kundu, Curr. Opin. Drug Discovery Dev., 2003, 6, 815–826.
10 I. Nakamura and Y. Yamamoto, Chem. Rev., 2004, 104, 2127–2198.
11 J. A. Varela and C. Saa, Chem. Rev., 2003, 103, 3787–3801.
12 H. Bonnemann, Angew. Chem., Int. Ed. Engl., 1985, 24, 248–262.
13 N. E. Schore, in Comprehensive Organic Synthesis, ed. B. M. Trost,
I. Fleming and L. A. Paquette, Pergamon Press, Oxford, 1991, vol. 5,
pp. 1129–1162.
14 A. Nefzi, J. M. Ostresh and R. A. Houghten, Chem. Rev., 1997, 97,
449–472.
15 J. Balzarini, M. Stevens, E. De Clercq, D. Schols and C. Pannecouque,
J. Antimicrob. Chemother., 2005, 55, 135–138.
16 A. R. Pinder, Nat. Prod. Rep., 1992, 9, 17–23.
17 A. O. Plunkett, Nat. Prod. Rep., 1994, 11, 581–590.
18 K. C. Nicolaou, R. Scarpelli, B. Bollbuck, B. Werschkun, M. M. Pereira,
M. Wartmann, K. H. Altmann, D. Zaharevitz, R. Gussio and
P. Giannakakou, Chem. Biol., 2000, 7, 593–599.
19 E. D. Sternberg and K. P. C. Vollhardt, J. Org. Chem., 1982, 47,
3447–3450.
20 K. P. C. Vollhardt, Angew. Chem., Int. Ed. Engl., 1984, 23, 539–556.
21 L. V. R. Bonaga, H. C. Zhang, A. F. Moretto, H. Ye, D. A. Gauthier,
J. Li, G. C. Leo and B. E. Maryanoff, J. Am. Chem. Soc., 2005, 127,
3473–3485.
22 K. M. Brummond, H. F. Chen, P. Sill and L. F. You, J. Am. Chem.
Soc., 2002, 124, 15186–15187.
23 P. A. Evans, J. R. Sawyer, K. W. Lai and J. C. Huffman,
Chem. Commun., 2005, 3971–3973.
Using a symmetric and a terminal alkyne, two regioisomeric
cobaltacyclopentadienes 33 and 34 can be potentially formed.
However, the 2,3,4-cyclopentadiene 34 is the minor isomer due to
steric interactions between the A and the B substituent. The major
2,3,5-isomer 33 reacts with the nitrile towards the regioisomeric
2,3,4,6- and 2,3,5,6-pyridines, 35 and 36 respectively. The
regioisomers 37 and 38 were not observed in the cyclotrimeriza-
tions described in Fig. 1. The ratio of 35/36 was about 2 : 1 due to
similar sterical demand of the two substituents. The slightly higher
amount of 35 can potentially be attributed to the sterical demand
of the trityloxy group. We are currently designing novel linker
strategies in which the substituent A consists of sterical demanding
groups thereby imposing a high regioselectivity on the reaction
leading to the predominant formation of 35. Ideally, these linker
groups will be cleaved in a traceless fashion.
In summary, we demonstrated the first crossed [2 + 2 + 2]
cyclotrimerization reaction leading to the formation of highly
substituted pyridines. The reaction was conducted on a solid-
support facilitating its application in the multi-component
synthesis of combinatorial libraries with good yields and excellent
purities. We are currently expanding its scope by using additional
reaction partners (e.g. isocyanates) and are synthesizing a variety
of small molecule arrays. The obtained heterocyclic structures will
be subsequently screened for biological activity.
D. D. Y. thanks the Department of Education for a GAANN
fellowship.
24 S. R. Gilbertson and B. DeBoef, J. Am. Chem. Soc., 2002, 124,
8784–8785.
25 D. Suzuki, R. Tanaka, H. Urabe and F. Sato, J. Am. Chem. Soc., 2002,
124, 3518–3519.
26 T. Takahashi, F. Y. Tsai, Y. Z. Li, H. Wang, Y. Kondo,
M. Yamanaka, K. Nakajima and M. Kotora, J. Am. Chem. Soc.,
2002, 124, 5059–5067.
Notes and references
1 R. W. Armstrong, A. P. Combs, P. A. Tempest, S. D. Brown and
T. A. Keating, Acc. Chem. Res., 1996, 29, 123–131.
2 S. L. Dax, J. J. McNally and M. A. Youngman, Curr. Med. Chem.,
1999, 6, 255–270.
27 Y. Yamamoto, T. Arakawa, R. Ogawa and K. Itoh, J. Am. Chem. Soc.,
2003, 125, 12143–12160.
28 Z. Yu and M. Bradley, Curr. Opin. Chem. Biol., 2002, 6, 347–352.
29 I. W. James, Tetrahedron, 1999, 55, 4855–4946.
30 F. Guillier, D. Orain and M. Bradley, Chem. Rev., 2000, 100,
3859–3859.
3 A. Domling, Comb. Chem. High Throughput Screening, 1998, 1, 1–22.
4 C. Hulme and T. Nixey, Curr. Opin. Drug Discovery Dev., 2003, 6,
921–929.
5 M. Pulici, G. Cervi, K. Martina and F. Quartieri, Comb. Chem. High
Throughput Screening, 2003, 6, 693–727.
31 C. Brandli and T. R. Ward, J. Comb. Chem., 2000, 2, 42–47.
This journal is ß The Royal Society of Chemistry 2006
Chem. Commun., 2006, 1313–1315 | 1315