M. I. Colombo et al. / Tetrahedron: Asymmetry 12 (2001) 1251–1253
1253
3. Uno, T.; Watanabe, H.; Mori, K. Tetrahedron 1990, 46,
5563–5566.
4. Taber, D. F.; Meagly, R. P.; Doren, D. J. J. Org. Chem.
1996, 61, 5723–5728.
more, since the attack of any nucleophilic base present in
the reaction medium to the neutral lactol cannot occur
under these conditions, the formation of Cannizaro-type
side products is avoided.
5. Irie, O.; Fujiwara, Y.; Nemoto, H.; Shishido, K. Tetra-
21. Compounds ( )-5a, ( )-5b and ( )-6 were fully character-
ized by 1H and 13C NMR spectroscopy. The data of ( )-6
are identical with those reported in the literature for
(−)-6.9
hedron Lett. 1996, 37, 9229–9232.
6. Maiti, S.; Achari, B.; Banerjee, A. K. Synlett 1998,
129–130.
7. Miyaoka, H.; Kajiwara, Y.; Hara, M.; Suma, A.;
Yamada, Y. Tetrahedron: Asymmetry 1999, 10, 3189–
3196.
22. Compound (−)-4b: colorless oil; [h]2D7=−25.3 (c 3,
CHCl3), e.e.=97%, the enantiomeric purity was estab-
1
lished by H NMR analysis employing the shift reagent
8. Momose, T.; Toyooka, N.; Nishio, M.; Shinoda, H.;
Fujii, H.; Yanagino, H. Heterocycles 1999, 51, 1321–
1343.
9. Corey, E. J.; Guzman-Perez, A.; Luh, T.-P. J. Am. Chem.
Soc. 1994, 116, 3611–3612.
10. Boeckman, Jr., R. J.; Liu, Y. J. Org. Chem. 1996, 61,
7984–7985.
11. Trost, B. M.; Li, Y. J. Am. Chem. Soc. 1996, 118,
6625–6633.
12. Bacigaluppo, J. A.; Colombo, M. I.; Preite, M. D.;
Zinczuk, J.; Ru´veda, E. A. Tetrahedron: Asymmetry 1996,
7, 1041–1057.
13. White, J. D.; Takabe, K.; Prisbylla, M. P. J. Org. Chem.
1985, 50, 5233–5244.
tris(3-[heptafluoropropyl-hydroxymethylene]-d-camphor-
ato)europium(III) derivative [Eu(hfc)3]; IR (neat) 1728,
1
1664, 1634, 1570 cm−1; H NMR (CDCl3, 200 MHz): l
6.27 (1H, d, J=16.4), 5.67 (1H, dd, J=16.4 and 8.2 Hz),
3.95–3.85 (2H, m), 3.80–3.60 (2H, m), 3.68 (3H, s),
2.60–2.30 (4H, m), 1.95 (1H, m), 1.87 (3H, s), 1.47 (3H,
s), 1.43 (3H, s), 1.42 (3H, s). 13C NMR (CDCl3, 50
MHz): l 197.78 (s), 175.85 (s), 151.69 (s), 133.92 (d),
132.41 (s), 128.86 (d), 97.62 (s), 63.66 (t, two carbons),
52.22 (q), 46.78 (s), 39.33 (d), 34.05 (t), 33.39 (t), 26.59
(q), 22.66 (q), 20.92 (q), 12.39 (q). HRMS calcd for
C18H26O5 (M+): 322.1780, found: 322.1784.
23. Compound (+)-1b: colorless oil, [h]3D0=+8.3 (c 0.35,
MeOH); IR (neat) 3368, 2930, 2876, 1644, 1594, 1456,
14. Baudin, J. B.; Hareau, G.; Julia, S. A.; Ruel, O. Tetra-
−1
1044 cm
;
1H NMR (D2O, 200 MHz): l 6.28 (1H, d,
hedron Lett. 1991, 32, 1175–1178.
15. Billington, R.; Jarowicki, K.; Kocienski, P.; Martin, V.
Synthesis 1996, 285–296.
J=16.3 Hz), 5.67 (1H, dd, J=16.3 and 8.4 Hz), 3.76 (1H,
d, J=11.4 Hz), 3.75 (2H, dd, A part of ABX, J=11.5
and 5.9 Hz), 3.66 (2H, dd, B part of ABX, J=11.1 and
7.0 Hz), 3.43 (1H, d, J=11.5 Hz), 2.71–2.55 (3H, m), 2.17
(1H, ddd, J=13.4, 9.8 and 6.0 Hz), 1.81 (3H, d, J=0.9
Hz), 1.74 (1H, ddd, J=13.6, 6.1 and 6.1 Hz), 1.12 (3H,
s). The signals at l 3.75 and 3.66 simplify into an AB
16. Smith, N. D.; Kocienski, P. J.; Street, S. D. A. Synthesis
1996, 652–666.
17. Colombo, M. I.; Zinczuk, J.; Mischne, M. P.; Ru´veda, E.
A. Pure Appl. Chem. 2001, 73, 623–626 and references
cited therein.
1
quartet upon irradiation at l 2.67. This H NMR spec-
1
18. Compound 3b: mp 112.8–113.3°C, H NMR (CDCl3, 200
trum is coincident with that reported by Fukaya et al. for
(+)-1b at 250 MHz.1 1H NMR (D2O, 500 MHz): l 6.28
(1H, dt, J=16.3 and 1.0 Hz), 5.67 (1H, dd, J=16.2 and
8.4 Hz), 3.76 (1H, d, J=11.4 Hz), 3.745 (1H, dd, J=11.2
and 5.9 Hz), 3.740 (1H, dd, J=11.2 and 5.9 Hz), 3.670
(1H, dd, J=11.2 and 7.1 Hz), 3.666 (1H, dd, J=11.2 and
7.1 Hz), 3.43 (1H, d, J=11.4 Hz), 2.68–2.52 (3H, m), 2.17
(1H, ddd, J=13.5, 10.4 and 5.3 Hz), 1.81 (3H, d, J=0.9
Hz), 1.75 (1H, ddd, J=13.5, 6.6 and 5.8 Hz), 1.12 (3H,
s). This 1H NMR spectrum is essentially identical with
that reported by Corey et al. for synthetic (+)-1b at 500
MHz.9 13C NMR (D2O, 50 MHz): l 207.12 (s), 164.87
(s), 139.17 (d), 134.35 (s), 131.37 (d), 70.44 (t), 64.55 (t,
two carbons), 50.30 (d), 43.18 (s), 35.89 (t), 33.28 (t),
23.02 (q), 15.63 (q). These data are consistent with those
reported by Corey et al. for (+)-1b at 100 MHz.9
MHz): l 8.24–8.20 (1H, m), 8.10–8.00 (1H, m), 7.66–7.60
(2H, m), 4.12 (2H, dd, A part of ABX, J=12.0 and 3.5
Hz), 3.81 (2H, dd, B part of ABX, J=12.0 and 4.6 Hz),
3.76 (2H, d, J=6.10 Hz), 2.41 (1H, m), 1.43 (3H, s), 1.39
(3H, s). 13C NMR (CDCl3, 50 MHz): l 165.68 (s), 152.40
(s), 136.49 (s), 127.98 (d), 127.57 (d), 125.27 (d), 122.20
(d), 98.25 (s), 63.09 (t, two carbons), 54.30 (t), 29.45 (d),
25.57 (q), 21.56 (q). Anal. calcd for C14H17NO4S2: C,
51.36; H, 5.23; N, 4.28; S, 19.58. Found: C, 51.16; H,
5.23; N, 4.35; S, 19.56%.
19. We thank Professor S. V. Ley (Cambridge) for this
helpful suggestion.
20. By treatment of 2 with sodium hydride in THF solution
at room temperature the corresponding anion is readily
formed. We believe that under these conditions an equi-
librium between the alkoxide and its open form is estab-
lished, allowing in this way fast attack of the lithiated
benzothiazolylsulfone to the carbonyl of the free alde-
hyde group, leading to the coupling product. Further-
24. Maria, A. O. M.; Donald, O.; Wendel, G. H.; Guzman,
J. A.; Guerreiro, E.; Giordano, O. S. Biol. Pharm. Bull.
2000, 23, 555–557.
.