LETTER
Synthesis of a Model System for the Macrocyclic Subunit of the Oximidines
1223
lic CHOH, = 3.80). These assignments were supported a macrolactonization can be exploited to differentiate two
by the H/C-COSY spectra.
functional groups. The stripped down ring system will be
important to clarify the role of the vinyl epoxide of the ox-
imidines. Studies to incorporate the enamide side chain of
salicylihalamide and the oximidines into this model sys-
tem are underway in our laboratory.
The macrolactonization led to a straightforward differen-
tiation of the two secondary hydroxy groups, although
with a moderate selectivity. Therefore, we attempted a
monoprotection prior to the macrolactonization. In this re-
gard, we took recourse to the corresponding tin acetals.21
Thus, diol 19, obtained from 15, was treated with dibutyl-
tin oxide (1.0 equiv nBu2SnO, toluene, 120 °C, 6 h) in tol-
uene followed by the addition of allyl bromide (1.5 equiv
allyl bromide, 2.0 equiv CsF, DMF, 23 °C, 18 h). This re-
action gave a 46:54 ratio of the two monoprotected com-
pounds 20 and 21 (Scheme 4). After chromatographic
separation each of them was converted to the correspond-
ing hydroxy acid (10 equiv LiOH, THF/MeOH/H2O,
75 °C, 76%). These acids were then subjected separately
to the macrolactonization. Again, the Yamaguchi condi-
tions were used. The yields were 34% for the cyclization
of 20 to 22 (1.5 mmol/L) and 12% for 21 to 23 (1.3 mmol/
L), respectively. The structural assignment was possible
at this stage by inspecting the H/H-COSY spectra.
Acknowledgement
Financial support by the Deutsche Forschungsgemeinschaft and the
Fonds der Chemischen Industrie is gratefully acknowledged.
References and Notes
(1) Kim, J. W.; Shin-ya, K.; Furihata, K.; Hayakawa, Y.; Seto, H.
J. Org. Chem. 1999, 64, 153.
(2) Isolation: Erickson, K. L.; Beutler, J. A.; Cardellina, J. H., II;
Boyd, M. R. J. Org. Chem. 1997, 62, 8188.
(3) Model studies: (a) Fürstner, A.; Thiel, O. R.; Blanda, G. Org.
Lett. 2000, 2, 3731; (b) Feutrill, J. T.; Holloway, G. A.; Hilli,
F.; Hügel, H. M.; Rizzacasa, M. A. Tetrahedron Lett. 2000,
41, 8569; (c) Georg, G. I.; Ahn, Y. M.; Blackman, B.; Farokhi,
F.; Flaherty, P. T.; Mossman, C. J.; Roy, S.; Yang, K. J. Chem.
Soc., Chem. Commun. 2001, 255.
(4) First total synthesis and revision of the absolute configuration:
Wu, Y.; Esser, L.; De Brabander, J. K. Angew. Chem. Int. Ed.
2000, 39, 4308.
(5) Total syntheses: (a) Wu, Y.; Seguil, O.; De Brabander, J. K.
Org. Lett. 2000, 2, 4241; (b) Labrecque, D.; Charron, S.; Rej,
R.; Blais, C.; Lamothe, S. Tetrahedron Lett. 2001, 42, 2645;
(c) Smith, A. B., III; Zheng, J. Synlett 2001, 1019.
(6) Isolation: Kunze, B.; Jansen, R.; Sasse, F.; Höfle, G.;
Reichenbach, H. J. Antibiot. 1998, 51, 1075.
MeO
CO2Me
PMBO
AcOH, H2O, 23 °C (90%)
15
OH
19
OH
MeO
1. nBu2SnO, toluene
CO2Me
PMBO
120 °C
(7) Model studies: Bhattacharjee, A.; De Brabander, J. K.
Tetrahedron Lett. 2000, 41, 8069.
2. allyl bromide, DMF, CsF
OR1
(83%, 20:21 = 46:54)
OR2
(8) First total synthesis: Bhattacharjee, A.; Seguil, O. R.; De
Brabander, J. K. Tetrahedron Lett. 2001, 42, 1217.
(9) (a) McKee, T. C.; Galinis, D. L.; Pannell, L. K.; Cardellina, J.
H., II; Laakso, J.; Ireland, C. M.; Murray, L.; Capon, R. J.;
Boyd, M. R. J. Org. Chem. 1998, 63, 7805; (b) Lobatamide A
is identical to the structure of YM-75518, see: Suzumura, K.-
i.; Takahashi, I.; Matsumoto, H.; Nagai, K.; Setiawan, B.;
Rantiatmodjo, R. M.; Suzuki, K.-i.; Nagano, N. Tetrahedron
Lett. 1997, 38, 7573.
(10) Dekker, K. A.; Aiello, R. J.; Hirai, H.; Inagaki, T.; Sakakibara,
T.; Suzuki, Y.; Thompson, J. F.; Yamauchi, Y.; Kojima, N. J.
Antibiot. 1998, 51, 14.
(11) For studies related to the enamide-side chain, see: (a) Snider,
B. B.; Song, F. Org. Lett. 2000, 2, 407; (b) Kuramochi, K.;
Watanabe, H.; Kitahara, T. Synlett 2000, 397; (c) Shen, R.;
Porco, J. A., Jr. Org. Lett. 2000, 2, 1333; (d) Stefanuti, I.;
Smith, S. A.; Taylor, R. J. K. Tetrahedron Lett. 2000, 41,
3737.
R1
R2
allyl
H
20
21
H
allyl
20
21
1. LiOH (76%)
1. LiOH (76%)
2. 2,4,6-Cl3(C6H2)COCl
NEt3, DMAP (12%)
2. 2,4,6-Cl3(C6H2)COCl
NEt3, DMAP (34%)
PMBO
O
OPMB
4
O
4
MeO
O
MeO
O
3
3
1
O
1
9
O
9
9a
10a
10
(12) Mal, D. Synth. Commun. 1986, 16, 331.
23
22
(13) Tidwell, T. T. Org. React. 1990, 39, 297.
(14) Harvey, D. F.; Lund, K. P.; Neil, D. A. J. Am. Chem. Soc.
1992, 114, 8424.
Scheme 4
(15) Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chem.
Rev. 1994, 94, 2483.
In summary, we have described a synthesis of the model
system for the macrocyclic subunit of the oximidines. Key
reactions are the asymmetric dihydroxylation of the enyne
10, the cross-coupling of the aryl triflate 1 with the vinyl
stannane 13 and finally a size-selective macrolactoniza-
tion of the dihydroxy acid 16. This study also shows that
(16) (a) Jung, M. E.; Light, L. A. Tetrahedron Lett. 1982, 23, 3851;
(b) Betzer, J.-F.; Delaloge, F.; Muller, B.; Pancrazi, A.;
Prunet, J. J. Org. Chem. 1997, 62, 7768; (c) Yazbak, A.;
Sinha, S. C.; Keinan, E. J. Org. Chem. 1998, 63, 5863.
(17) Zhang, H. X.; Guibé, F.; Balavoine, G. J. Org. Chem. 1990,
55, 1857.
Synlett 2001, No. 8, 1221–1224 ISSN 0936-5214 © Thieme Stuttgart · New York