Table 1 Enantioselective double C–H insertion reaction of 2 catalyzed by chiral dirhodium(II) complexesa
Yield of
1 (%)b
Ee of
1 (%)c
Entry
Catalyst
Solvent
Temp./°C
Time/h
1
2
3
4
5
6
7
8
9
Rh2(S-PTPA)4
Rh2(S-PTA)4
Rh2(S-PTV)4
Rh2(S-PTPG)4
Rh2(S-PTTL)4
Rh2(S-PTTL)4
Rh2(R-PTTL)4
Rh2(S-PTTL)4
Rh2(S-PTTL)4
Toluene
Toluene
Toluene
Toluene
Toluene
Toluene
Toluene
CH2Cl2
CF3C6H5
0
0
0
0
0
0.5
1
0.5
1
0.5
1
1
71
68
66
67
83
78
76
72
66
25
23
24
21
68
80
279d
60
210
210
0
1
1
223
72
a Reactions were carried out as follows: 2 mol % of catalyst was added to a stirred solution of diazo compound 2 (0.20 mmol) in the indicated solvent (2 ml)
at the indicated temperature under argon. After the reaction proceeded to completion, the solvent was evaporated in vacuo and the residue was treated with
90% aqueous DMSO (1.5 ml) at 120 °C for 1 h. Standard workup followed by chromatography provided (R)-1. b Overall isolated yield. c Determined by
HPLC (column, Daicel chiralcel OD; 4.6 3 250 mm 3 2; eluent, 15% propan-2-ol in hexane; flow rate, 1.0 ml min21; retention time, 31.2 min [(R)-1] and
35.1 min [(S)-1]). d (S)-1 was preferentially formed.
2 N. Srivastava, A. Mital and A. Kumar, J. Chem. Soc., Chem. Commun.,
provide (R)-1 after demethoxycarbonylation. Thus, the sense
1992, 493.
and magnitude of enantioselection indicates the level of
differentiation between methylene C–H bonds during the first
3 A. S. C. Chan, W. Hu, C.-C. Pai, C.-P. Lau, Y. Jiang, A. Mi, M. Yan, J.
Sun, R. Lou and J. Deng, J. Am. Chem. Soc., 1997, 119, 9570; W. Hu,
C–H insertion. In accordance with the order of reactivity of the
M. Yan, C.-P. Lau, S. M. Yang, A. S. C. Chan, Y. Jiang and A. Mi,
target C–H bond (methine C–H > methylene C–H),16 we could
Tetrahedron Lett., 1999, 40, 973.
4 Y. Jiang, S. Xue, K. Yu, Z. Li, J. Deng, A. Mi and A. S. C. Chan,
J. Organomet. Chem., 1999, 586, 159; M. A. Arai, T. Arai and H. Sasai,
Org. Lett., 1999, 1, 1795.
not observe the first insertion product 3,9 which makes it
possible to conduct this one-pot reaction under the constant
conditions.
In summary, we have achieved the first catalytic, enantio-
selective synthesis of 1,1A-spirobi[indan-3,3A-dione] (1) of up to
80% ee, in which the use of Rh2(R or S-PTTL)4 as a catalyst is
crucial to the success of the double C–H insertion process. The
present protocol has the advantages of operational simplicity as
well as a facile entry to optically pure 1 via a single
recrystallization, thus providing great potential for large-scale
preparation. Elaboration of (R)- or (S)-1 to hitherto unexplored
chiral ligands such as 1,1A-spirobi[indan-2,2A-diol] for metal
catalyzed enantioselective reactions is currently in progress.
This research was supported in part by a Grant-in-Aid
(No.11470465) from the Ministry of Education, Science, Sports
and Culture, Japan. We thank Ms S. Oka of the Center for
Instrumental Analysis at Hokkaido University, for mass
measurements.
5 (a) S. Hagishita, K. Kuriyama, M. Hayashi, Y. Nakano, K. Shingu and
M. Nakagawa, Bull. Chem. Soc. Jpn., 1971, 44, 496; (b) J. H. Brewster
and R. T. Prudence, J. Am. Chem. Soc., 1973, 95, 1217; (c) R. K. Hill
and D. A. Cullison, J. Am. Chem. Soc., 1973, 95, 1229; (d) H. Falk, W.
Fröstl and K. Schlögl, Tetrahedron Lett., 1974, 217; (e) E. Dynesen,
Acta Chem. Scand., Ser. B, 1975, 29, 77; (f) N. Harada, N. Ochiai, K.
Takada and H. Uda, J. Chem. Soc., Chem. Commun., 1977, 495.
6 (a) H. Gerlach, Helv. Chim. Acta, 1968, 51, 1587; (b) J. A. Nieman, M.
Parvez and B. A. Keay, Tetrahedron: Asymmetry, 1993, 4, 1973; (c)
J. A. Nieman and B. A. Keay, Tetrahedron: Asymmetry, 1995, 6, 1575;
(d) V. B. Birman, A. L. Rheingold and K.-C. Lam, Tetrahedron:
Asymmetry, 1999, 10, 125.
7 For asymmetric synthesis of 4,9-dimethylspiro[4.4]nonane-2,7-dione
using Rh(I)-catalyzed hydroacylation twice, see: M. Takahashi, M.
Tanaka, E. Sakamoto, M. Imai, A. Matsui, K. Funakoshi, K. Sakai and
H. Suemune, Tetrahedron Lett., 2000, 41, 7879.
8 For synthesis of enantiomerically pure trans,trans-spiro[4.4]nonane-
1,6-diol by asymmetric reduction of racemic spirodiketone, see: C.-W.
Lin, C.-C. Lin, Y.-M. Li and A. S. C. Chan, Tetrahedron Lett., 2000, 41,
4425.
9 P. S. Aburel and K. Undheim, Tetrahedron Lett., 1998, 39, 3813; P. S.
Aburel and K. Undheim, J. Chem. Soc., Perkin Trans. 1, 2000, 1891.
10 M. Anada and S. Hashimoto, Tetrahedron Lett., 1998, 39, 79; M.
Anada, N. Watanabe and S. Hashimoto, Chem. Commun., 1998, 1517;
M. Anada and S. Hashimoto, Tetrahedron Lett., 1998, 39, 9063; M.
Anada, O. Mita, H. Watanabe, S. Kitagaki and S. Hashimoto, Synlett,
1999, 1775.
11 R. N. Renaud, R. B. Layton and R. R. Fraser, Can. J. Chem., 1973, 51,
3380.
12 S. Hashimoto, N. Watanabe and S. Ikegami, Tetrahedron Lett., 1992,
33, 2709.
13 H. M. L. Davies, Aldrichim. Acta, 1997, 30, 107.
14 A. Ogawa and D. P. Curran, J. Org. Chem., 1997, 62, 450; S. Kitagaki,
M. Anada, O. Kataoka, K. Matsuno, C. Umeda, N. Watanabe and S.
Hashimoto, J. Am. Chem. Soc., 1999, 121, 1417.
Notes and references
† Bis(a-diazo-b-keto ester) 2 was prepared from diphenylmethane-2,2A-
dicarboxylic acid11 in 70% yield by the following three-step sequence: i,
SOCl2, toluene, reflux; ii, LiCH2CO2Me, THF, 278 °C; iii, MsN3, Et3N,
MeCN.
‡ Overall isolated yield: Rh2(O2CC7H15)4, 28%; Rh2(O2CCPh3)4, 13%;
Rh2(O2CC3F7)4, 17%.
§ While reaction of the corresponding bis(a-diazoketone) with Rh2(OAc)4
in CH2Cl2 provided 52% yield of 1, Rh2(S-PTTL)4 gave a complex mixture
of products under the same conditions.
¶ Rh2(S-DOSP)4 developed by Davies13 was found to be less reactive than
our catalysts; catalysis of 2 with 2 mol % of Rh2(S-DOSP)4 in toluene
proceeded at rt sluggishly to afford, after demethoxycarbonylation, (S)-1 in
48% yield with 8.3% ee.
15 D. F. Taber, E. H. Petty and K. Raman, J. Am. Chem. Soc., 1985, 107,
196.
16 D. F. Taber and R. E. Ruckle, Jr., J. Am. Chem. Soc., 1986, 108,
7686.
1 R. Noyori, Asymmetric Catalysis in Organic Synthesis, Wiley, New
York, 1994; Catalytic Asymmetric Synthesis, ed. I. Ojima, Wiley-VCH,
New York, 2000.
Chem. Commun., 2001, 1604–1605
1605