C. S. Harris et al. / Tetrahedron Letters 49 (2008) 5946–5949
5949
4. (a) Li, L.-S.; Rader, C.; Matsushita, M.; Das, S.; Barbas, C. F., III; Lerner, R. A.;
Sinha, C. S. J. Med. Chem. 2004, 47, 5630–5640; (b) Miller, W. H.; Gleason, J. G.;
Heerding, D.; Samanen, J. M.; Uzinskas, I. N.; Manley, P. J. PCT Int. Appl. WO99/
45972.
5. Penning, T. D.; Penning, T. D.; Khilevich, A.; Chen, B. B.; Russell, M. A.; Boys, M.
L.; Wang, Y.; Duffin, T.; Engleman, V. W.; Finn, M. B.; Freeman, S. K.; Hanneke,
M. L.; Keene, J. L.; Klover, J. A.; Nickols, G. A.; Nickols, M. A.; Rader, R. K.; Settle,
S. L.; Shannon, K. E.; Steininger, C. N.; Westlin, M. M.; Westlin, W. F. Bioorg. Med.
Chem. Lett. 2006, 16, 3156–3161; Nagarajan, S. R.; Hwang-Fun, L. PCT Int. App.
WO2005/051904 A2.
6. (a) Ullmann, F. Ber. Dtsch. Chem. Ges. 1903, 36, 2389; (b) Ullmann, F. Ber. Dtsch.
Chem. Ges. 1904, 37, 853–854; (c) Goldberg, I. Ber. Dtsch. Chem. Ges. 1906, 39,
1691–1692. for an excellent review see a recent article from (d) Ley, S. V.;
Thomas, A. W. Angew. Chem., Int. Ed. 2003, 42, 5400–5449.
7. Alkylation of 2(5H)-thiophenone with the bis(mesylate) of hexan-diol:
Jew, S.-s.; Kim, E.-k.; Je, S.-m.; Zhao, L.-X.; Kim, H.-o.; Park, H.-g.; Ko, K.-h.;
Kim, W.-k.; Kim, H.-J.; Cheong, J. H.; Lee, E.-S. Heterocycles 2000, 52, 1087–1104.
8. (a) Wolter, M. A.; Nordmann, G.; Job, G. E.; Buchwald, S. L. Org. Lett. 2002, 4,
973–976; (b) Shafir, A.; Lichtor, P. A.; Buchwald, S. L. J. Am. Chem. Soc. 2007, 129,
3490–3491.
12. Gronowitz, S. Heterocyclic Compounds: Thiophene and its Derivatives Part III;
John Wiley and Sons, 1986; pp 73–80 and references cited therein.
13. The pKa of 2(5H)-thiophenone was determined by multi-wavelength
spectrophotometry on a Sirius GlpKa, sweeping the pH from 2.5 to 11.5 and
returning to 2.5. The analyte, composed of 2 mg of substrate, was dissolved in
200 ll of DMSO; 7.5 ll of this solution was diluted with 250 ll of a buffer
solution containing 0.2 g of KH2PO4 dissolved in 100 ml of water.
14. Mitsunobu, O. Synthesis 1981, 1–28.
15. Typical procedure A: To a stirred solution/suspension of triphenylphosphine/
polymer-supported triphenylphosphine (3 equiv, 1.6 mmol/g) was added di-
tert-butyl azodicarboxylate (DTAD, 3 equiv) in dichloromethane (5 ml/ 100 mg
of input thiophenone) at À10 °C. The solution was stirred for 10 min at À10 °C
and a solution of the alcohol (3 equiv) in dichloromethane (1 ml) was added.
The resulting suspension was slowly agitated for 20 min and 2(5H)-
thiophenone (1 equiv)* in dichloromethane (1 ml) was added dropwise to
the mixture over a period of time so that the internal temperature did not rise
above 0 °C. After the addition was complete, the solution/suspension was
stirred at room temperature for 1 hour, filtered if necessary, concentrated to
dryness and the residue was generally purified by flash chromatography on
silica gel eluting with gradient of pentane/dichloromethane (100:0) to
dichloromethane/MeOH (90:10) to afford the title compounds generally as
oils. For non-polar ethers (e.g., entry 7), the reduced DTAD could be eliminated
by trituration with pentane prior to purification. *Procedure B involved the
simultaneous addition of the alcohol (3 equiv) and 2(5H)-thiophenone
(1 equiv) in dichloromethane (1 ml) to a stirred suspension of the betaine at
À10 °C.
9. Batey, R. A.; Quach, T. A. Org. Lett. 2003, 5, 1381–1384.
10. Humphries, P. S.; Bailey, S.; Do, Q. T.; Kellum, J. H.; McClellan, G. A.; Wilhite, D.
M. Tetrahedron Lett. 2006, 47, 5333–5336.
11. Some relevant references around the subject include: (a) Hinrichs, H.;
Margaretha, P. Chem. Ber. 1992, 125, 2311–2317; (b) Kiesewetter, R.;
Margaretha, P. Helv. Chim. Acta 1989, 72, 83–92.