Trisoxazoline/Cu(II)-Promoted Kinugasa Reaction
SCHEME 1. Plausible Mechanism
TABLE 1. Effect of Copper Salt on the Kinugasa Reactiona
performed strictly under nitrogen to mitigate the Glaser oxidative
coupling. In our efforts to develop superior catalysts that are
cheap, easy to access, air-stable, and water-tolerant, we designed
a pseudo C3-symmetric trisoxazoline (TOX) 2a6,7 (Scheme 1)
by sidearm approach and found that TOX 2a/Cu(II) was an
efficient catalyst for the asymmetric Friedel-Crafts reaction of
indole with alkylidene malonate,7 asymmetric 1,3-cycloaddition,8a
and Diels-Alder reaction.8b Recently, we extended the TOX
(4) For relative reviews, see: (a) Magriotis, P. A. Angew. Chem., Int.
Ed. 2001, 40, 4377. (b) France, S.; Weatherwax, A.; Taggi, A. E.; Lectka,
T. Acc. Chem. Res. 2004, 37, 592. For direct asymmetric catalytic Gilman-
Speeter reaction, see: (c) Gilman, H.; Speeter, M. J. Am. Chem. Soc. 1943,
65, 2255. (d) Fujieda, H.; Kanai, M.; Kambara, T.; Iida, A.; Tomioka, K.
J. Am. Chem. Soc. 1997, 119, 2060. (e) Tomioka, K.; Fujieda, H.; Hayashi,
S.; Hussein, M. A.; Kambara, T.; Nomura, Y.; Kanai, M.; Koga, K. Chem.
Commun. 1999, 715. (f) Kambara, T.; Hussein, M. A.; Fujieda, H.; Iida,
A.; Tomioka, K. Tetrahedron Lett. 1998, 39, 9055. For direct asymmetric
catalytic Staudinger reaction, see: (g) Staudinger, H. Justus Liebigs Ann.
Chem. 1907, 356, 51. (h) Taggi, A. E.; Hafez, A. M.; Wack, H.; Young,
B.; Drury, W. J., III; Lectka, T. J. Am. Chem. Soc. 2000, 122, 7831-7832.
(i) Wack, H.; Drury, W. J., III; Taggi, A. E.; Ferraris, D.; Lectka, T. Org.
Lett. 1999, 1, 1985. (j) Hodous, B. L.; Fu, G. C. J. Am. Chem. Soc. 2002,
124, 1578. For rhodium-catalyzed carbonylation of an aziridine, see: (k)
Calet, S.; Urso, F.; Alper, H. J. Am. Chem. Soc. 1989, 111, 931. For
rhodium-catalyzed intramolecular insertion of a R-diazo amide into a C-H
bond, see: (l) McCarthy, N.; McKervey, M. A.; Ye, T.; McCann, M.;
Murphy, E.; Doyle, M. P. Tetrahedron Lett. 1992, 33, 5983. (m) Doyle,
M. P.; Protopopova, M. N.; Winchester, W. R.; Daniel, K. L. Tetrahedron
Lett. 1992, 33, 7819. (n) Doyle, M. P.; Kalinin, A. V. Synlett 1995, 1075.
(o) Watanabe, N.; Anada, M.; Hashimoto, S.-i.; Ikegami, S. Synlett 1994,
1031. (p) Anada, M.; Watanabe, N.; Hashimoto, S.-i. Chem. Commun. 1998,
1517. (q) Anada, M.; Hashimoto, S.-i. Tetrahedron Lett. 1998, 39, 9063.
For direct asymmetric catalytic Kinugasa reaction, see ref 5.
Et3N
(equiv)
time yield
(h)
ee
entry
metal salt
CuCl
CuBr
CuI
CuOTf‚1/2C6H6
Cu(ClO4)2‚6H2O
Cu(OTf)2
Cu(BF4)2‚xH2O
Cu(ClO4)2‚6H2O
Cu(ClO4)2‚6H2O
Cu(ClO4)2‚6H2O
Cu(ClO4)2‚6H2O
(%)b cis/transc (%)d
1
2
3
4
5
6
7
8
2.0
2.0
2.0
2.0
2.0
2.0
2.0
1.5
1.0
1.0
0.5
7
96
16
40
12
6
42
19
19
18
19
42
30
46
36
42
60
53
50
56
45
43
13/1
11/1
12/1
11/1
10/1
11/1
13/1
11/1
11/1
12/1
11/1
33
49
51
5
56
3
56
61
61
63
63
9
10e
11
a Reactions were run at 15 °C using 12 mol % of TOX 2a and 10 mol
% of Cu(ClO4)2‚6H2O under N2 on 0.25 mmol scale. b Total isolated yield
of cis- and trans-isomers. c Determined by 1H NMR. d The enantiomeric
excess of the cis-isomer was determined by chiral HPLC. e Under air
atmosphere.
(5) For a recent review, see: (a) Marco-Contelles, J. Angew. Chem., Int.
Ed. 2004, 43, 2198. For the initial report, see: (b) Kinugasa, M.; Hashimoto,
S. J. Chem. Soc., Chem. Commun. 1972, 466. For direct asymmetric catalytic
versions, see: (c) Miura, M.; Enna, M.; Okuro, K.; Nomura, M. J. Org.
Chem. 1995, 60, 4999. (d) Lo, M. M.-C.; Fu, G. C. J. Am. Chem. Soc.
2002, 124, 4572. (e) Shintani, R.; Fu, G. C. Angew. Chem., Int. Ed. 2003,
42, 4082. For relative studies and applications, see: (f) Ding, L. K.; Irwin,
W. J. J. Chem. Soc., Perkin Trans. 1 1976, 2382. (g) Dutta, D. K.; Boruah,
R. C.; Sandhu, J. S. Heterocycles 1986, 24, 655. (h) Dutta, D. K.; Boruah,
R. C.; Sandhu, J. S. Indian J. Chem., Sect. B 1986, 25, 350. (i) Okuro, K.;
Enna, M.; Miura, M.; Nomura, M. J. Chem. Soc., Chem. Commun. 1993,
1107. (j) Basak, A.; Mahato, T.; Bhattacharya, G.; Mukherjee, B.
Tetrahedron Lett. 1997, 38, 643. (k) Basak, A.; Bhattacharya, G.; Bdour,
H. M. M. Tetrahedron 1998, 54, 6529. (l) Basak, A.; Ghosh, S. C.;
Bhowmick, T.; Das, A. K.; Bertolasi, V. Tetrahedron Lett. 2002, 43, 5499.
(m) Basak, A.; Ghosh, S. C. Synlett 2004, 1637.
(6) For a recent review on trisoxazolines, see: Zhou, J.; Tang, Y. Chem.
Soc. ReV. 2005, 34, 664.
(7) (a) Zhou, J.; Tang, Y. J. Am. Chem. Soc. 2002, 124, 9030 (b) Zhou,
J.; Ye, M.-C.; Huang, Z.-Z. Tang, Y. J. Org. Chem. 2004, 69, 1309. (c)
Zhou, J.; Ye, M.-C.; Tang, Y. J. Comb. Chem. 2004, 6, 301. (d) Zhou, J.;
Tang, Y. Chem. Commn. 2004, 432. (e) Ye, M.-C.; Li, B.; Zhou, J.; Tang,
Y. J. Org. Chem. 2005, 70, 6108.
FIGURE 1. Chiral ligands for the asymmetric Kinugasa reaction.
2a/Cu(I or II) system to the Kinugasa reaction and found that,
in the presence of a catalytic amount of TOX 2a, Cu(ClO4)2‚
6H2O could be used directly instead of Cu(I) salt to catalyze
the Kinugasa reaction between alkynes 4 and nitrones 5 very
well to provide the desired â-lactams 6 in moderate to good
enantioselectivities.9 In this article, we wish to report the reaction
modification, the scope and limitation in detail, and the
mechanistic studies.
(8) (a) Huang, Z.-Z.; Kang, Y.-B.; Zhou, J.; Ye, M.-C.; Tang, Y. Org.
Lett. 2004, 6, 1677. (b) Zhou, J.; Tang, Y. Org. Biomol. Chem. 2004, 2,
429.
(9) Ye, M.-C.; Zhou, J.; Huang, Z.-Z. Tang, Y. Chem. Commun. 2003,
2554.
J. Org. Chem, Vol. 71, No. 9, 2006 3577