Journal of the American Chemical Society
Page 28 of 30
1
2
3
4
5
6
7
8
9
(17) Sahu, B.; Chenna, V.; Lathrop, K. L.; Thomas, S. M.; Zon, G.; Livak, K. J.; Ly, D. H.
Synthesis of Conformationally Preorganized and Cell-Permeable Guanidine-Based γ-
Peptide Nucleic Acids (ΓGPNAs). J. Org. Chem. 2009, 74 (4), 1509–1516.
(18) Manicardi, A.; Fabbri, E.; Tedeschi, T.; Sforza, S.; Bianchi, N.; Brognara, E.; Gambari, R.;
Marchelli, R.; Corradini, R. Cellular Uptakes, Biostabilities and Anti-MiR-210 Activities of
Chiral Arginine-PNAs in Leukaemic K562 Cells. ChemBioChem 2012, 13 (9), 1327–1337.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(19) Dose, C.; Seitz, O. Single Nucleotide Specific Detection of DNA by Native Chemical
Ligation of Fluorescence Labeled PNA-Probes. Bioorg. Med. Chem. 2008, 16 (1), 65–77.
(20) Englund, E. A.; Wang, D.; Fujigaki, H.; Sakai, H.; Micklitsch, C. M.; Ghirlando, R.; Martin-
Manso, G.; Pendrak, M. L.; Roberts, D. D.; Durell, S. R.; et al. Programmable Multivalent
Display of Receptor Ligands Using Peptide Nucleic Acid Nanoscaffolds. Nat. Commun.
(21) Englund, E. A.; Appella, D. H. Synthesis of γ-Substituted Peptide Nucleic Acids: A New
Place to Attach Fluorophores without Affecting DNA Binding. Org. Lett. 2005, 7 (16),
3465–3467. https://doi.org/10.1021/OL051143Z.
(22) De Costa, N. T. S.; Heemstra, J. M. Evaluating the Effect of Ionic Strength on Duplex
Stability for PNA Having Negatively or Positively Charged Side Chains. PLoS One 2013,
(23) Vernille, J. P.; Kovell, L. C.; Schneider, J. W. Peptide Nucleic Acid (PNA) Amphiphiles:
Synthesis, Self-Assembly, and Duplex Stability. Bioconjug. Chem. 2004, 15 (6), 1314–
1321. https://doi.org/10.1021/BC049831A.
(24) Marques, B. F.; Schneider, J. W. Sequence-Specific Binding of DNA to Liposomes
Containing Di-Alkyl Peptide Nucleic Acid (PNA) Amphiphiles. Langmuir 2005, 21 (6),
2488–2494. https://doi.org/10.1021/LA047962U.
(25) Lau, C.; Bitton, R.; Bianco-Peled, H.; Schultz, D. G.; Cookson, D. J.; Grosser, S. T.;
Schneider, J. W. Morphological Characterization of Self-Assembled Peptide Nucleic Acid
Amphiphiles. J. Phys. Chem. B 2006, 110 (18), 9027–9033.
https://doi.org/10.1021/JP057049H.
(26) Kumarswamy, R.; Volkmann, I.; Thum, T. Regulation and Function of MiRNA-21 in Health
(27) Nielsen, P. E.; Egholm, M. An Introduction to Peptide Nucleic Acid. Curr. Issues Molec.
Biol. 1999, 1 (2), 89–104.
(28) Kleiner, R. E.; Brudno, Y.; Birnbaum, M. E.; Liu, D. R. DNA-Templated Polymerization of
Side-Chain-Functionalized Peptide Nucleic Acid Aldehydes. J. Am. Chem. Soc 2008, 130
(29) Loving, G.; Imperiali, B. A Versatile Amino Acid Analogue of the Solvatochromic
Fluorophore 4- N,N -Dimethylamino-1,8-Naphthalimide: A Powerful Tool for the Study of
Dynamic Protein Interactions. J. Am. Chem. Soc. 2008, 130 (41), 13630–13638.
(30) Manna, A.; Rapireddy, S.; Sureshkumar, G.; Ly, D. H. Synthesis of Optically Pure ΓPNA
Monomers: A Comparative Study. Tetrahedron 2015, 71 (21), 3507–3514.
(31) Porcheddu, A.; Giacomelli, G.; Piredda, I.; Carta, M.; Nieddu, G. A Practical and Efficient
Approach to PNA Monomers Compatible with Fmoc-Mediated Solid-Phase Synthesis
Protocols. European J. Org. Chem. 2008, 2008 (34), 5786–5797.
(32) Wu, Y.; Xu, J.-C. Synthesis of Chiral Peptide Nucleic Acids Using Fmoc Chemistry.
Tetrahedron 2001, 57 (38), 8107–8113. https://doi.org/10.1016/S0040-4020(01)00789-X.
28
ACS Paragon Plus Environment