Please do not adjust margins
Journal of Materials Chemistry A
Page 8 of 10
DOI: 10.1039/C6TA05107C
ARTICLE
Journal Name
S26†). For all CTF-BIs, the calculated CO2/N2 adsorption selectivities 9. M. G. Rabbani and H. M. El-Kaderi, Chem. Mater., 2012, 24
were in the range of 31.3~88.5 at 273 K, and 29.0~102.7 at 303 K, 1511-1517.
respectively (Table and Fig. S26 ). The selectivities were 10. P. Arab, M. G. Rabbani, A. K. Sekizkardes, T. İslamoğlu and H.
comparable to or better than the reported fluorinated CTF (TPC-1, M. El-Kaderi, Chem. Mater., 2014, 26, 1385-1392.
selectivity of CO2/N2 at 273 K: 38),51 Cz-POFs (selectivity of CO2/N2 11. B. Ashourirad, A. K. Sekizkardes, S. Altarawneh and H. M. El-
at 273 K: 19-37),22 and fl-CTFs (selectivity of CO2/N2 at 273 K:
Kaderi, Chem. Mater., 2015, 27, 1349-1358.
,
3
†
13~35),30 but lower than that of Azo-COPs (selectivity of CO2/N2: 12. H. A. Patel, S. Hyun Je, J. Park, D. P. Chen, Y. Jung, C. T. Yavuz
73~124 at 273 K, 113~142 at 298 K) containing azo groups.12
and A. Coskun, Nat. Commun., 2013,
13. J. Lu and J. Zhang, J. Mater. Chem. A, 2014,
14. L. Tao, F. Niu, D. Zhang, J. Liu, T. Wang and Q. Wang, RSC
Adv., 2015, , 96871-96878.
4, 1357.
2
, 13831-13834.
Conclusions
5
15. X. Zhu, C.-L. Do-Thanh, C. R. Murdock, K. M. Nelson, C. Tian,
S. Brown, S. M. Mahurin, D. M. Jenkins, J. Hu, B. Zhao, H. Liu
In conclusion,
a
novel dicyano monomer containing
benzimidazole groups (DCBI) was designed and synthezed by
an oxidative coupling catalyzed by CAN at room temperature.
A series of CTFs containing benzimidazoles (CTF-BIs) were
prepared by the dynamic trimerization under ionothermal
condition. The CTF-BIs exhibited BET surface areas as high as
up to 1549 m2 g-1. The capacity of adsorption of CO2 for all the
CTF-BIs was studied and the CO2 uptake capacity was as high
as up to 21.68wt% at 273 K and 1.10 bar for CTF-BI-11. Some
CTF-BIs exhibited high selectivity of CO2 over N2, which made
these materials potential candidates for applications in CO2
capture and storage technology.
and S. Dai, ACS Macro Lett., 2013,
16. J. Byun, S.-H. Je, H. A. Patel, A. Coskun and C. T. Yavuz, J.
Mater. Chem. A, 2014, , 12507-12512.
2, 660-663.
2
17. S. Altarawneh, S. Behera, P. Jena and H. M. El-Kaderi, Chem.
Commun., 2014, 50, 3571-3574.
18. M. Zhang, Z. Perry, J. Park and H.-C. Zhou, Polymer, 2014, 55
,
335-339.
19. A. K. Sekizkardes, S. Altarawneh, Z. Kahveci, T. İslamoğlu and
H. M. El-Kaderi, Macromolecules, 2014, 47, 8328-8334.
20. A. K. Sekizkardes, J. T. Culp, T. Islamoglu, A. Marti, D.
Hopkinson, C. Myers, H. M. El-Kaderi and H. B. Nulwala, Chem.
Commun., 2015, 51, 13393-13396.
21. V. Guillerm, L. J. Weselinski, M. Alkordi, M. I. H. Mohideen, Y.
Belmabkhout, A. J. Cairns and M. Eddaoudi, Chem. Commun.,
2014, 50, 1937-1940.
Acknowledgements
The authors thank National Natural Science Foundation of
China (No. 51103168, 21201093 and 51403219) for financial
support.
22. X. Zhang, J. Lu and J. Zhang, Chem. Mater., 2014, 26, 4023-
4029.
23. Q. Chen, M. Luo, P. Hammershøj, D. Zhou, Y. Han, B. W.
Laursen, C.-G. Yan and B.-H. Han, J. Am. Chem. Soc., 2012,
134, 6084-6087.
Notes and references
1. International Energy Agency (IEA), CO2 Capture and Storage: A
Key Carbon Abatement Option, IEA/OECD, Paris, France, 2008.
2. J. Rockstrom, W. Steffen, K. Noone, A. Persson, F. S. Chapin, E.
F. Lambin, T. M. Lenton, M. Scheffer, C. Folke, H. J.
Schellnhuber, B. Nykvist, C. A. de Wit, T. Hughes, S. van der
Leeuw, H. Rodhe, S. Sorlin, P. K. Snyder, R. Costanza, U.
Svedin, M. Falkenmark, L. Karlberg, R. W. Corell, V. J. Fabry, J.
Hansen, B. Walker, D. Liverman, K. Richardson, P. Crutzen and
J. A. Foley, Nature, 2009, 461, 472-475.
24. S. Kumar, M. Y. Wani, C. T. Arranja, J. d. A. e. Silva, B. Avula
and A. J. F. N. Sobral, J. Mater. Chem. A, 2015,
3, 19615-
19637.
25. P. Kuhn, M. Antonietti and A. Thomas, Angew. Chem. Int. Ed.,
2008, 47, 3450-3453.
26. P. Kuhn, A. Forget, D. Su, A. Thomas and M. Antonietti, J. Am.
Chem. Soc., 2008, 130, 13333-13337.
27. L. Hao, B. Luo, X. Li, M. Jin, Y. Fang, Z. Tang, Y. Jia, M. Liang,
A. Thomas, J. Yang and L. Zhi, Energy Environ. Sci., 2012, 5,
3. D. M. D'Alessandro, B. Smit and J. R. Long, Angew. Chem. Int.
Ed., 2010, 49, 6058-6082.
9747-9751.
28. P. Katekomol, J. Roeser, M. Bojdys, J. Weber and A. Thomas,
Chem. Mater., 2013, 25, 1542-1548.
4. M. E. Boot-Handford, J. C. Abanades, E. J. Anthony, M. J. Blunt,
S. Brandani, N. Mac Dowell, J. R. Fernandez, M.-C. Ferrari, R.
Gross, J. P. Hallett, R. S. Haszeldine, P. Heptonstall, A. Lyngfelt,
Z. Makuch, E. Mangano, R. T. J. Porter, M. Pourkashanian, G.
T. Rochelle, N. Shah, J. G. Yao and P. S. Fennell, Energy Environ.
29. Y. Zhao, K. X. Yao, B. Teng, T. Zhang and Y. Han, Energy
Environ. Sci., 2013,
30. S. Hug, M. B. Mesch, H. Oh, N. Popp, M. Hirscher, J. Senker
and B. V. Lotsch, J. Mater. Chem. A, 2014, , 5928-5936.
6, 3684-3692.
2
Sci., 2014, 7, 130-189.
31. K. Bahrami, M. M. Khodaei and F. Naali, J. Org. Chem., 2008,
73, 6835-6837.
5. C. Xu and N. Hedin, Mater. Today, 2014, 17, 397-403.
6. R. Balasubramanian and S. Chowdhury, J. Mater. Chem. A,
32. S. Ren, M. J. Bojdys, R. Dawson, A. Laybourn, Y. Z. Khimyak,
D. J. Adams and A. I. Cooper, Adv. Mater., 2012, 24, 2357-
2361.
2015,
7. X. Lu, D. Jin, S. Wei, Z. Wang, C. An and W. Guo, J. Mater.
Chem. A, 2015, , 12118-12132.
8. M. G. Rabbani and H. M. El-Kaderi, Chem. Mater., 2011, 23
3, 21968-21989.
3
33. L. Tao, F. Niu, D. Zhang, T. Wang and Q. Wang, New J. Chem.,
2014, 38, 2774-2777.
,
1650-1653.
8 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins