J . Org. Chem. 2001, 66, 7729-7737
7729
Am in a tion Rea ction s of Ar yl Ha lid es w ith Nitr ogen -Con ta in in g
Rea gen ts Med ia ted by P a lla d iu m /Im id a zoliu m Sa lt System s
Gabriela A. Grasa, Mihai S. Viciu, J inkun Huang, and Steven P. Nolan*
Department of Chemistry, University of New Orleans, New Orleans, Louisiana 70148
snolan@uno.edu
Received J une 15, 2001
Nucleophilic N-heterocyclic carbenes have been conveniently used as catalyst modifiers in amination
reactions involving aryl chlorides, aryl bromides, and aryl iodides with various nitrogen-containing
substrates. The scope of a coupling process using a Pd(0) or Pd(II) source and an imidazolium salt
in the presence of a base, KOtBu or NaOH, was tested using various substrates. The Pd2(dba)3/
IPr‚HCl (1, IPr ) 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) system presents the highest
activity with respect to electron-neutral and electron-rich aryl chlorides. The ligand is also effective
for the synthesis of benzophenone imines, which can be easily converted to the corresponding
primary amines by acid hydrolysis. Less reactive indoles were converted to N-aryl-substituted
indoles using as supporting ligand the more donating SIPr‚HCl (5, SIPr ) 1,3-bis(2,6-diisopropy-
lphenyl)-4,5-dihydroimidazol-2-ylidene). The Pd(OAc)2/SIPr‚HCl/NaOH system is efficient for the
N-arylation of diverse indoles with aryl bromides. The general protocol developed has been applied
successfully to the synthesis of a key intermediate in the synthesis of an important new antibiotic.
Mechanistically, palladium-to-ligand ratio studies strongly support an active species bearing one
nucleophilic carbene ligand.
In tr od u ction
ing ligation plays a crucial role in dictating the efficiency
of the catalytic system.8 To this end, bulky monodentate
phosphine or bidentate PX (X ) P, N, O) ligands are
usually employed.8,9 Ligand properties make possible the
activation of inexpensive aryl chlorides as partners in
amination reaction.9 However, despite their effectiveness
in controlling reactivity and selectivity in organometallic
chemistry and homogeneous catalysis,10 tertiary phos-
phines are often air-sensitive and are subject to P-C
bond degradation at elevated temperatures. As a conse-
quence, the use of higher phosphine concentration in such
catalytic processes is often required.11
Palladium-catalyzed synthesis of N-substituted anilines
using aryl halides or halide equivalents has proven to
be a very useful and versatile method in organic synthe-
sis.1 The N-aryl moiety represents an important motif
in natural products2a and pharmaceutical and medicinal
compounds,2b as well as in polymers and materials.3-6
Early development of N-aryl synthesis proved to be quite
difficult and limited in generality.7 Consequently, transi-
tion-metal-assisted amination of aryl halides has devel-
oped in the past few years as a most viable and direct
method leading to the synthesis of a large variety of
substituted amines.8 Studies by Hartwig and Buchwald
on catalytic amination have shown that metal-support-
(8) For representative examples of amination of aryl chlorides, see:
(a) Wolfe, J . P.; Buchwald, S. L. Angew. Chem., Int. Ed. Engl. 1999,
38, 2413-2416. (b) Bei, X.; Uno, T.; Norris, J .; Turner, H. W.;
Weinburg, W. H.; Guram, A. S.; Petersen, J . L. Organometallics 1999,
18, 1840-1853. (c) Bei, X.; Guram, A. S.; Turner, H. W.; Weinburg,
W. H. Tetrahedron. Lett. 1999, 40, 1237-1240. (d) Old, D. W.; Wolfe,
J . P.; Buchwald, S. L. J . Am. Chem. Soc. 1998, 120, 9722-9723.
(e) Hamann, B. C.; Hartwig, J . F. J . Am. Chem. Soc. 1988, 120,
7369-7370. (f) Brenner, E.; Fort, Y. Tetrahedron Lett. 1998, 39,
5359-5362. (g) Yamamoto, T.; Nishiyama, M.; Kole, Y. Tetrahedron
Lett. 1998, 39, 2367-2370. (h) Wolfe, J . P.; Buchwald, S. L. J . Am.
Chem. Soc. 1997, 119, 6054-6058. (i) Riermeir, T. H.; Zapf, A.;
Beller, M. Top. Catal. 1997, 4301-309. (j) Reddy, N. P.; Tanaka, M.
Tetrahedron Lett. 1997, 38, 4807-4810. (k) Stauffer, S. R.; Lee, S.;
Stambuli, J . P.; Hauck, S. I.; Hartwig, J . F. Org. Lett. 2000, 2, 1423-
1426.
(9) For more examples dealing with couplings involving aryl chlo-
rides, see: (a) Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed. 1999,
38, 2411-2413. (b) Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed.
1998, 37, 3387-3388. (c) Reetz, M. T.; Lohmer, G.; Schwickardi, R.
Angew. Chem., Int. Ed. 1998, 37, 481-483. (d) Littke, A. F.; Fu, G. C.
J . Org. Chem. 1999, 64, 10-11. (e) Bei, X.; Guram, A. S.; Turner, H.
W.; Weinburg, W. H. Tetrahedron Lett. 1999, 40, 3855-3858. (f)
Indolese, A. F. Tetrahedron Lett 1997, 38, 3513-3516. (g) Saito,
S.; Oh-tani, S.; Miyaura, N. J . Org. Chem. 1997, 62, 8024-8030. (h)
Saito, S.; Sakai, M.; Miyaura, N. Tetrahedron Lett. 1996, 37, 2993-
2996.
(1) For important recent reviews of palladium- and nickel-mediated
aryl amination, see: (a) Wolfe, J . P.; Wagaw, S.; Marcoux, J . F.;
Buchwald, S. L. Acc. Chem. Res. 1998, 31, 805-818. (b) Hartwig, G.
F. Acc. Chem. Res. 1998, 31, 852-860. (c) Hartwig, J . F. Angew. Chem.,
Int. Ed. Engl. 1998, 37, 2046-2067. (d) Hartwig, J . F. Synlett 1997,
329-340. (e) Yang, B. H.; Buchwald, S. L. J . Organomet. Chem. 1999,
576, 125-146.
(2) (a) Peat, A. J .; Buchwald, S. L. J . Am. Chem. Soc. 1996, 118,
1028-1030. (b) Hong, Y. P.; Tanoury, G. J .; Wilkinson, H. S.; Bakale,
R. P.; Wald, S. A.; Senanayake, C. H. Tetrahedron Lett. 1997, 38, 5663-
5666. (c) Hong, Y.; Senanayake, C. H.; Xiang, T.; Vandenbossche, C.
P.; Tanoury, G. J .; Bakale, R. P.; Wald, S. A. Tetrahedron Lett. 1998,
39, 3121-3124.
(3) (a) Louie, J .; Hartwig, J . F. J . Am. Chem. Soc. 1997, 119, 11695-
11696. (b) Kanbara, T.; Honma, A.; Hasehawa, K. Chem Lett. 1996,
1135-1136.
(4) Singer, R. A.; Sadighi, J . P.; Buchwald, S. L. J . Am. Chem. Soc.
1998, 120, 213-214.
(5) Thayumanavan, S.; Barlow, S.; Marder, S. R. Chem. Mater. 1997,
9, 3231-3235.
(6) (a) Goodson, F. E.; Hartwig, J . F. Macromolecules 1998, 31,
1700-1703. (b) Zhang, X.-X.; Sadighi, J . P.; Mackewitz, T. W.;
Buchwald, S. P. J . Am. Chem. Soc. 2000, 122, 7606-7607.
(7) (a) March, J . Advanced Organic Chemistry, 4th ed.; Wiley: New
York, 1992. (b) Mitchell, H.; Leblanc, Y. J . Org. Chem. 1994, 59, 682-
687. (c) Banfi, A.; Bartoletti, M.; Bellora, E.; Bignotti, M.; Turconi, M.
Synthesis 1994, 775-776. (d) Hattori, T.; Sakamoto, J .; Hayashizaka,
N.; Miyano, S. Synthesis 1994, 199-202.
(10) Applications of phosphine ligands in homogeneous catalysis:
(a) Parshall, G. W.; Ittel, S. Homogeneous Catalysis; J . Wiley and Sons:
New York, 1992. (b) Homogeneous Catalysis with Metal Phosphine
Complexes; Pignolet, L. H., Ed.; Plenum: New York, 1983.
10.1021/jo010613+ CCC: $20.00 © 2001 American Chemical Society
Published on Web 10/25/2001