475
A. D. Benischke et al.
Letter
Synlett
(8) For the preparation of benzylic zinc reagents, see: (a) Metzger,
A.; Schade, M. A.; Knochel, P. Org. Lett. 2008, 10, 1107.
(b) Metzger, A.; Schade, M. A.; Manolikakes, G.; Knochel, P.
Chem. Asian J. 2008, 3, 1678. (c) Metzger, A.; Piller, F. M.;
Knochel, P. Chem. Commun. 2008, 5824. (d) Dagousset, G.;
Francois, C.; Leon, T.; Blanc, R.; Sansiaume-Dagousset, E.;
Knochel, P. Synthesis 2014, 46, 3133.
(9) Peng, Z.; Knochel, P. Org. Lett. 2011, 13, 3198.
(10) Quinio, P.; Benischke, A. D.; Moyeux, A.; Cahiez, G.; Knochel, P.
Synlett 2015, 26, 514.
oxidative insertion was complete, the solution of benzylic man-
ganese(II) chloride was separated from the resulting salts via a
syringe equipped with a filter and transferred to another pre-
dried and argon-flushed Schlenk tube, before being titrated
with iodine.
General Procedure for the Iron-Catalyzed Cross-Coupling of
Benzylic Manganese(II) Chlorides 1a–f with Electrophiles: A
dry and argon-flushed Schlenk flask, equipped with a magnetic
stirring bar and a rubber septum, was charged with FeCl2 (10
mol%, 99.5% pure), the corresponding electrophile (1.0 equiv)
and freshly distilled THF. Thereupon, the benzylic manga-
nese(II) chloride solution (1.05–1.10 equiv) was added drop-
wise at 0 °C. After the addition was complete, the reaction
mixture was stirred for a given time at the prior adjusted tem-
perature and then allowed to warm to r.t. The reaction comple-
tion was monitored by GC analysis of the quenched aliquots. A
saturated aqueous solution of NH4Cl was added and the
aqueous layer was extracted three times with Et2O or EtOAc (3 ×
50 mL). The combined organic layers were dried over MgSO4, fil-
tered and concentrated under reduced pressure. Purification of
the crude products by flash column chromatography afforded
the desired products.
(11) For an overview of organomanganese chemistry, see:
(a) Cahiez, G.; Bernard, D.; Normant, J. F. Synthesis 1977, 130.
(b) Friour, G.; Cahiez, G.; Normant, J. F. Synthesis 1984, 37.
(c) Cahiez, G.; Alami, M. Tetrahedron 1989, 45, 4163. (d) Cahiez,
G.; Laboue, B. Tetrahedron Lett. 1989, 30, 3545. (e) Brunner, H.;
Fürstner, A. Tetrahedron Lett. 1996, 37, 7009. (f) Cahiez, G.;
Marquais, S. Pure Appl. Chem. 1996, 68, 53. (g) Cahiez, G.;
Marquais, S. Tetrahedron Lett. 1996, 37, 1773. (h) Cahiez, G.;
Razafintsalama, L.; Laboue, B.; Chau, F. Tetrahedron Lett. 1998,
39, 849. (i) Cahiez, G.; Duplais, C.; Buendia, J. Chem Rev. 2009,
109, 1434. (j) Wunderlich, S. H.; Kienle, M.; Knochel, P. Angew.
Chem. Int. Ed. 2009, 48, 7256. (k) Peng, Z.; Li, N.; Sun, X.; Wang,
F.; Xu, L.; Jiang, C.; Song, L.; Yan, Z. Org. Biomol. Chem. 2014, 12,
7800. (l) Quinio, P.; Benischke, A. D.; Moyeux, A.; Cahiez, G.;
Knochel, P. Synlett 2015, 26, 514. (m) Haas, D.; Hammann, J. M.;
Moyeux, A.; Cahiez, G.; Knochel, P. Synlett 2015, 26, 1515.
(12) For key coupling reactions using chromium(II) salts, see:
(a) Takai, K.; Matsukawa, N.; Takahashi, A.; Fujii, T. Angew.
Chem. Int. Ed. 1998, 37, 152. (b) Takai, K.; Toshikawa, S.; Inoue,
A.; Kokumai, R. J. Am. Chem. Soc. 2003, 125, 12990. (c) Takai, K.;
Toshikawa, S.; Inoue, A.; Kokumai, R.; Hirano, M. J. Organomet.
Chem. 2007, 692, 520. (d) Murakami, K.; Ohmiya, H.; Yorimitsu,
H.; Oshima, K. Org. Lett. 2007, 9, 1569. (e) Steib, A. K.; Kuzmina,
O. M.; Fernandez, S.; Flubacher, D.; Knochel, P. J. Am. Chem. Soc.
2013, 135, 15346. (f) Steib, A. K.; Kuzmina, O. M.; Fernandez, S.;
Malhotra, S.; Knochel, P. Chem. Eur. J. 2015, 21, 1961.
(13) For recent cobalt-catalyzed cross-coupling reactions and related
reactions, see: (a) Bégouin, J.-M.; Gosmini, C. J. Org. Chem. 2009,
74, 3221. (b) Bégoin, J.-M.; Rivard, M.; Gosmini, C. Chem.
Commun. 2010, 46, 5972. (c) Nicolas, L.; Angibaud, P.; Stansfield,
I.; Bonnet, P.; Meerpoel, L.; Reymond, S.; Cossy, J. Angew. Chem.
Int. Ed. 2012, 51, 11101. (d) Nicolas, L.; Izquierdo, E.; Angibaud,
P.; Stansfield, I.; Meerpoel, L.; Reymond, S.; Cossy, J. J. Org. Chem.
2013, 78, 11807. (e) Zeng, J.; Liu, K. M.; Duan, X. F. Org. Lett.
2013, 15, 5342. (f) Despiau, C. F.; Dominey, A. P.; Harrowven, D.
C.; Linclau, B. Eur. J. Org. Chem. 2014, 4335. (g) Corpet, M.; Bai,
X.-Z.; Gosmini, C. Adv. Synth. Catal. 2014, 356, 2937.
(h) Hammann, J. M.; Haas, D.; Knochel, P. Angew. Chem. Int. Ed.
2015, 54, 4478.
Ethyl 5-(3-Fluorobenzyl)furan-2-carboxylate (5): To a solu-
tion of FeCl2 (12.7 mg, 0.10 mmol, 0.10 equiv) and ethyl 5-bro-
mofuran-2-carboxylate (3b; 220 mg, 1.0 mmol, 1.0 equiv) in
THF (1.0 mL) the benzylic manganese(II) chloride solution (1b,
4.0 mL, 0.26 M, 1.05mmol, 1.05 equiv) was added dropwise at 0
°C. Then, the reaction mixture was stirred for 2 h at 0 °C and
allowed to warm to r.t. A saturated aqueous solution of NH4Cl
was added and the aqueous layer was extracted three times
with Et2O (3 × 50 mL). The combined organic layers were dried
over MgSO4, filtered and concentrated under reduced pressure.
Finally the crude product was purified by flash column chroma-
tography (SiO2, i-hexane–Et2O, 99:1, Rf 0.11) leading to the
desired product 5 (174 mg, 0.70 mmol, 70%) as a pale yellow oil.
1H NMR (400 MHz, CDCl3): δ = 7.20–7.24 (m, 1 H), 7.05 (d, J =
3.4 Hz, 1 H), 6.98 (dd, J = 8.0, 1.3 Hz, 1 H), 6.90 (m, 2 H), 6.06 (dt,
J = 3.4, 0.8 Hz, 1 H), 4.31 (q, J = 7.1 Hz, 2 H), 3.99 (s, 2 H), 1.32 (t,
J = 7.1 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 163.0 (d, 1JC–F
=
3
245 Hz), 158.9, 158.6, 144.1, 139.3 (d, JC–F = 7.0 Hz), 130.2 (d,
3JC–F = 8.0 Hz), 124.6 (d, 4JC–F = 3.0 Hz), 119.0, 115.9 (d, 2JC–F = 22
Hz), 113.9 (d, 2JC–F = 20 Hz), 109.2, 60.9, 34.5, 14.5. 19F NMR (376
MHz, CDCl3): δ = –113.0. IR (ATR): 3128, 2983, 2361, 1713,
1616, 1591, 1519, 1488, 1448, 1383, 1368, 1297, 1251, 1205,
1173, 1126, 1075, 1016, 970, 944, 912, 866, 789, 760, 731, 681
cm–1. MS (EI, 70 eV): m/z (%) = 249 (10), 248 (67), 220 (10), 219
(23), 203 (42), 176 (17), 175 (100), 147 (16), 146 (40), 127 (10).
HRMS (EI, 70 eV): m/z calcd for C14H13FO3: 248.0849; found:
248.0845.
(14) Reducing the catalyst loading to 5.0 mol% led in some cases to
decreased reaction yields.
Ethyl 2-[3-(Trifluoromethyl)benzyl]nicotinate (6): To a solu-
tion of FeCl2 (12.7 mg, 0.10 mmol) and ethyl 2-chloronicotinate
(3c; 186 mg, 1.0 mmol, 1.0 equiv) in THF (1.0 mL) the benzylic
manganese(II) chloride solution (1c, 3.3 mL, 0.34 M, 1.1 mmol,
1.1 equiv) was added dropwise at 0 °C. The reaction mixture
was stirred for 2 h at 0 °C and allowed to warm to r.t. A satu-
rated aqueous solution of NH4Cl was added and the aqueous
layer was extracted three times with Et2O (3 × 50 mL). The com-
bined organic layers were dried over MgSO4, filtered and con-
centrated under reduced pressure. Purification of the crude
product by flash column chromatography (SiO2, i-hexane–Et2O,
8:2, Rf 0.17) afforded the desired product 6 (200 mg, 0.65 mmol,
65%) as a colorless liquid. 1H NMR (400 MHz, CDCl3): δ = 8.62
(dd, J = 4.8, 1.8 Hz, 1 H), 8.13 (dd, J = 7.9, 1.8 Hz, 1 H), 7.49 (s, 1
(15) Hansch, C.; Leo, R.; Taft, R. W. Chem. Rev. 1991, 91, 165.
(16) General Procedure for the Preparation of Benzylic Manga-
nese(II) Chlorides (1a–f): A dry and argon-flushed Schlenk
tube, equipped with a magnetic stirring bar and a rubber
septum, was charged with magnesium (0.18 g, 7.20 mmol, 2.40
equiv), followed by freshly distilled THF (3.0 mL) or MTBE (1.9
mL) and a solution of MnCl2·2LiCl (3.8 mL, 3.80 mmol, 1.25
equiv, 1.0 M in THF). The mixture was cooled to 0 °C, the benzyl
chloride (3.0 mmol, 1.0 equiv) was added at once and main-
tained at 0 °C until complete conversion of the starting material
was observed. The completion of the metalation was monitored
by GC analysis of hydrolyzed and iodolyzed aliquots. When the
© Georg Thieme Verlag Stuttgart · New York — Synlett 2016, 27, 471–476