Cycloadditions to Optically Active 2-Alkoxy-2H-pyran-3(6H)-ones
J . Org. Chem., Vol. 66, No. 26, 2001 8865
The presence of the minor component of the mixture was
(C-8a), 31.2, 28.6 (C-5,8), 19.2, 18.7 (2 CH3). Anal. Calcd for
detected in the first fractions of the column, and its structure
was assigned as benzyl R-L-ribopyranoside20 (8a ) by NMR
spectroscopy: 13C NMR (50.3 MHz, DMSO-d6) sugar ring
carbons δ 98.7 (C-1), 70.3, 69.5, 67.3 (C-2,3,4), 60.9 (C-5).
C
18H22O3: C, 75.50; H, 7.74. Found: C, 75.18; H, 8.06.
(3R,4aR,8aS)-6,7-Dim eth yl-3-m eth oxy-4a,5,8,8a-tetr ah y-
d r o-1H-2-ben zop yr a n -4(3H)-on e (9b). Cycloadduct 9b (ee
> 75%) gave [R]D +20.4 (c 1.1, CHCl3): 1H NMR (500 MHz,
CDCl3) δ 4.50 (bs, 1, H-3), 4.33 (dd, 1, J 1,8a ) 2.3 Hz, J 1,1′
)
Con ver sion of 4b in to P a r tia lly Ra cem ic Meth yl P en -
top yr a n osid es 7b a n d 8b. Compound 4b (0.394 g, 3.08 mmol)
dissolved in dry MeOH (65 mL) was reduced with NaBH4 (0.15
g, 3.97 mmol) in the presence of CeCl3‚7H2O (0.31 g, 0.83
mmol) as described for 4a . After the workup, the crude syrup,
which showed a main product by TLC (Rf ) 0.33, hexane/
EtOAc 2:1), was dissolved in a mixture of tert-butyl alcohol
(10 mL) and water (1 mL) and N-methylmorpholine N-oxide
was added (0.60 g, 5.12 mmol). The resulting solution, cooled
to 0 °C, was treated with 2% (w/v) OsO4 in tert-butyl alcohol
(0.34 mL). After stirring at room temperature for 16 h, the
mixture was processed as described for 7a , and purified by
flash chromatography (EtOAc/MeOH 10:1) to afford crystal-
line, partially racemic methyl â-D-arabinopyranoside (7b, 0.365
g, 72% from 4b). Recrystallization from ethanol gave: mp 162-
164 °C (lit.21 167-168 °C); [R]D -180.9 (c 1.1, H2O); [R]D
-240.6, for the optically pure glycoside.
The minor component of the mixture (8b) was detected in
the following fractions of the column, and its 13C NMR
spectrum was identical to that reported20 for its enantiomer
(methyl R-D-ribopyranoside).
(4a R,8a S)-6,7-Dim eth yl-3-a lk oxy-4a ,5,8,8a -tetr a h yd r o-
1H-2-ben zop yr a n -4(3H)-on es (9a -d ) a n d (4a R,8a S)-3-
Alk oxy-4a ,5,8,8a -t e t r a h yd r o-1H -2-b e n zop yr a n -4(3H )-
on es (10a ,c).
11.3 Hz, H-1), 3.51 (dd, 1, J 1′,8a ) 1.2 Hz, H-1′), 3.46 (s, 3,
CH3O), 3.24 (ddd, 1, J 4a,5 < 1 Hz, J 4a,5′ ) 6.4 Hz, J 4a,8a ) 5.4
Hz, H-4a), 2.48 (bd, 1, J 5,5′ ) 17.5 Hz, H-5), 2.37 (m, 1, H-8a),
2.23 (bdd, 1, J 8a,8 ) 12.0 Hz, J 8,8′ ) 16.3 Hz, H-8), 1.97 (bd, 1,
H-5′), 1.81 (bdd, 1, J 8a,8′ ) 6.4 Hz, H-8′), 1.68 (2 bs, 6, 2 CH3),
1.65; 13C NMR (50.3 MHz, CDCl3) δ 203.4 (C-4), 123.3, 122.8
(C-6,7), 101.0 (C-3), 63.3 (C-1), 43.2 (C-4a), 38.1 (C-8a), 31.1,
28.5 (C-5,8), 19.1, 18.6 (2 CH3). Anal. Calcd for C12H18O3: C,
68.55; H, 8.63. Found: C, 68.21; H, 8.92.
(3S,4a R,8a S)-6,7-Dim eth yl-3-[(R)-2′-octyloxy]-4a ,5,8,8a -
tetr a h yd r o-1H-2-ben zop yr a n -4(3H)-on e (9c): [R]D -39.7 (c
1.1, CHCl3); 1H NMR (500 MHz, CDCl3) δ 4.71 (bs, 1, H-3),
4.40 (dd, 1, J 1,8a ) 2.3 Hz, J 1,1′ ) 11.4 Hz, H-1), 3.84 (sextet, 1,
J ) 6.3 Hz, H-2 octyl), 3.50 (dd, 1, J 1′,8a ) 1.1 Hz, H-1′), 3.27
(ddd, 1, J 4a,5 ∼ 1 Hz, J 4a,5′ ) 6.1 Hz, J 4a,8a ) 5.3 Hz, H-4a),
2.49 (bd, 1, J 5,5′ ) 17.6 Hz, H-5), 2.38 (m, 1, J 8a,8 ) 11.8 Hz,
J 8a,8′ ) 4.6 Hz, H-8a), 2.25 (bdd, 1, J 8,8′ ) 16.5 Hz, H-8), 1.98
(bd, 1, H-5′), 1.81 (bdd, 1, H-8′), 1.65, 1.59 (2 bs, 6, 2 CH3),
1.62-1.25 (m, 10, CH2 octyl), 1.14 (d, 3, J ) 6.3 Hz, CH3-1
octyl), 0.90 (t, 3, J ) 6.0 Hz, CH3-8 octyl); 13C NMR (125 MHz,
CDCl3) δ 203.6 (C-4), 123.4, 123.0 (C-6,7), 97.6 (C-3), 73.3 (C-
2′), 63.6 (C-1), 43.3 (C-4a), 38.2 (C-8a), 37.3, 31.9, 31.2, 29.3,
28.7, 25.8, 22.7 (C-5,8 and 5 CH2 octyl), 19.2, 19.1, 18.7, 14.1
(4 CH3). Anal. Calcd for C19H32O3: C, 73.98; H, 10.46. Found:
C, 73.65; H, 10.78.
Th er m a l Cycloa d d ition Gen er a l P r oced u r e. The re-
spective dienophile 4a -c (0.25 mmol) and dry toluene (0.02
mL) were placed in a thick-walled glass tube, and hydro-
quinone (1 mg) was added. Argon was bubbled through the
solution, and upon addition of the diene, the glass tube was
sealed and heated in a sand bath at a temperature and for
the time indicated in Table 1. The reaction mixture was then
concentrated and purified by flash chromatography (1-2%
EtOAc in hexane) to afford adducts 9a -c and 10a .
Lew is Acid Ca ta lyzed Cycloa d d ition Gen er a l P r oce-
d u r e. The respective dihydropyranone 4a -d (0.24 mmol) was
weighed into a vial equipped with a magnetic stirrer and
septum seal. The anhydrous solvent (0.5 mL) was added, and
the vial was flushed with dry argon and sealed. The mixture
was cooled to -18 °C, and the Lewis acid catalyst was added.
The mixture was stirred at -18 °C for 5 min, and the flask
was placed in a bath at the temperature desired for the
cycloaddition. A solution of the diene in the dry solvent (0.6
mL) was then slowly injected, and the temperature was
maintained for the time indicated in Table 1. The reaction
mixture was diluted with ethyl ether (30 mL), except for the
reaction in CH2Cl2 in which case the same solvent was used
for the dilution. The resulting solution was washed with satd
aq NaHCO3, satd aq NaCl, dried (MgSO4), and concentrated.
The residue was purified by flash chromatography (1-2%
EtOAc in hexane) to afford the corresponding cycloadducts
9a -d and 10a ,c. The yields are reported in Table 1.
(3S,4a R,8a S)-6,7-Dim eth yl-3-[(S)-2′-octyloxy]-4a ,5,8,8a -
tetr a h yd r o-1H-2-ben zop yr a n -4(3H)-on e (9d ): [R]D -14.3 (c
0.9, CHCl3); 1H NMR (500 MHz, CDCl3) δ 4.69 (bs, 1, H-3),
4.42 (dd, 1, J 1,8a ) 2.2 Hz, J 1,1′ ) 11.3 Hz, H-1), 3.77 (sextet, 1,
J ) 6.2 Hz, H-2 octyl), 3.49 (dd, 1, J 1′,8a ) 1.2 Hz, H-1′), 3.27
(ddd, 1, J 4a,5 < 1 Hz, J 4a,5′ ) 6.3 Hz, J 4a,8a ) 5.4 Hz, H-4a),
2.49 (bd, 1, J 5,5′ ) 17.5 Hz, H-5), 2.37 (m, 1, J 8a,8 ) 11.8 Hz,
J 8a,8′ ) 4.4 Hz, H-8a), 2.24 (bdd, 1, J 8,8′ ) 17.2 Hz, H-8), 1.98
(bd, 1, H-5′), 1.80 (bdd, 1, H-8′), 1.65, 1.59 (2 bs, 6, 2 CH3),
1.63-1.24 (m, 10, CH2 octyl), 1.27 (d, 3, J ) 6.2 Hz, CH3-1
octyl), 0.88 (t, 3, J ) 6 Hz, CH3-8 octyl); 13C NMR (50.3 MHz,
CDCl3) δ 203.5 (C-4), 123.5, 123.0 (C-6,7), 99.7 (C-3), 75.7 (C-
2′), 63.6 (C-1), 43.2 (C-4a), 38.3 (C-8a), 36.5, 31.8, 31.2, 29.4,
28.7, 25.2, 22.6 (C-5,8 and 5 CH2 octyl), 21.4, 19.2, 18.8, 14.1
(4 CH3). Anal. Calcd for C19H32O3: C, 73.98; H, 10.46. Found:
C, 73.82; H, 10.57.
(3S,4a R,8a S)-3-Ben zyloxy-4a ,5,8,8a -t et r a h yd r o-1H -2-
ben zop yr a n -4(3H)-on e (10a ). Cycloadduct 10a (ee > 86%)
had [R]D -83.8 (c 1.0, CHCl3): 1H NMR (200 MHz, CDCl3) δ
7.34 (bs, 5, H-aromatic), 5.62 (m, 2, H-6,7), 4.82, 4.57 (2 d, 2,
J ) 11.7 Hz, PhCH2), 4.74 (bs, 1, H-3), 4.40 (dd, 1, J 1,8a ) 2.2
Hz, J 1,1′ ) 11.3 Hz, H-1), 3.53 (dd, 1, J 1′,8a ) 0.8 Hz, H-1′), 3.37
(bt, 1, J ∼ 5.7 Hz, H-4a), 2.62 (bd, 1, J 5,5′ ) 17.5 Hz, H-5), 2.41
(m, 1, H-8a), 2.26 (m, 1, H-8), 2.00 (m, 2, H-5′,8′); 13C NMR
(50.3 MHz, CDCl3) δ 203.0 (C-4), 136.9, 128.5, 128.1 (C-
aromatic), 124.9, 124.3 (C-6,7), 99.4 (C-3), 69.7 (PhCH2O), 63.9
(C-1), 42.7 (C-4a), 37.7 (C-8a), 24.7, 22.3 (C-5,8). Anal. Calcd
for C16H18O3: C, 74.40; H, 7.02. Found: C, 74.57; H, 7.21.
(3S,4a R,8a S)-3-[(R)-2′-Octyloxy]-4a ,5,8,8a -tetr a h yd r o-
1H-2-ben zop yr a n -4(3H)-on e (10c): [R]D -63.0 (c 1.1, CHCl3);
1H NMR (500 MHz, CDCl3) δ 5.64 (m, 2, H-6,7), 4.73 (bs, 1,
H-3), 4.42 (dd, 1, J 1,8a ) 2.2 Hz, J 1,1′ ) 11.3 Hz, H-1), 3.85
(sextet, 1, J ) 6.0 Hz, H-2 octyl), 3.49 (dd, 1, J 1′,8a ) 1.3 Hz,
H-1′), 3.34 (bt, 1, J 4a,8a ∼ J 4a,5′ ) 5.6 Hz, H-4a), 2.64 (bd, 1,
J 5,5′ ) 17.5 Hz, H-5), 2.42 (m, 1, J 8a,8 ) 11.2 Hz, H-8a), 2.27
(m, 1, J 8,8′ ) 16.8 Hz, H-8), 2.00 (m, 2, H-5′,8′), 1.62-1.32 (m,
10, CH2 octyl), 1.14 (d, 3, J ) 6.0 Hz, CH3-1 octyl), 0.91 (t, 3,
J ) 6.0 Hz, CH3-8 octyl); 13C NMR (50.3 MHz, CDCl3) δ 203.5
(C-4), 124.9, 124.3 (C-6,7), 97.6 (C-3), 73.3 (C-2′), 63.9 (C-1),
42.7 (C-4a), 37.7 (C-8a), 37.3, 31.9, 29.3, 25.8, 24.7, 22.7, 22.3
(C-5,8 and 5 CH2 octyl), 19.3, 14.2 (2 CH3 octyl). Anal. Calcd
for C17H28O3: C, 72.82; H, 10.06. Found: C, 73.09; H, 10.25.
P r ep a r a tive Syn th esis of 9a u n d er Th er m a l Con d i-
tion s. Isola tion of Isom er ic (3S,4a S,8a R)-6,7-Dim eth yl-
For the preparation of 9c,d and 10c, the optically pure
dihydropyranones 4c and 4d have been employed. The enan-
tiomeric composition of 9a ,b and 10a was established by 1H
NMR experiments with ytterbium tris[3-(heptafluoropropyl-
hydroxymethylene)-(+)-camphorate].
(3S,4a R,8a S)-6,7-Dim et h yl-3-b en zyloxy-4a ,5,8,8a -t et -
r a h yd r o-1H-2-ben zop yr a n -4(3H)-on e (9a ). The adduct 9a
(ee > 86%) gave [R]D -49.7 (c 1.1, CHCl3): 1H NMR (500 MHz,
CDCl3) δ 7.34 (bs, 5, H-aromatic), 4.81, 4.57 (2 d, 2, J ) 11.5
Hz, PhCH2), 4.71 (bs, 1, H-3), 4.40 (dd, 1, J 1,8a ) 2.2 Hz, J 1,1′
) 11.2 Hz, H-1), 3.53 (dd, 1, J 1′,8a ) 1.1 Hz, H-1′), 3.30 (ddd, 1,
J 4a,5 < 1 Hz, J 4a,5′ ) 6.5 Hz, J 4a,8a ) 5.6 Hz, H-4a), 2.48 (bd, 1,
J 5,5′ ) 17.4 Hz, H-5), 2.37 (m, 1, H-8a), 2.24 (bdd, 1, J 8a,8
)
11.5 Hz, J 8,8′ ) 17.2 Hz, H-8), 1.96 (bd, 1, H-5′), 1.81 (bdd, 1,
H-8′), 1.64, 1.58 (2 bs, 6, 2 CH3); 13C NMR (125 MHz, CDCl3)
δ 203.2 (C-4), 137.0, 128.5, 128.1 (C-aromatic), 123.4, 123.0
(C-6,7), 99.4 (C-3), 69.7 (PhCH2O), 63.7 (C-1), 43.2 (C-4a), 38.2