10. Abram, M.; Lang, E.; Bonfada, E. Electrochemical and spectroscopic
behavior of Bis(2-mercaptopyridine-N-oxide)oxovanadium(IV). Z.
Anorg. Allg. Chem. 2002, 628, 1419–1424.
11. Ferrari, M. B.; Bisceglie, F.; Pelosi, G.; Sassi, M.; Tarasconi, P.; Cornia,
M.; Capacchi, S.; Albertini, R.; Pinneli, S. Synthesis, characterization
and X-ray structures of new antiproliferative and proapoptotic
natural aldehyde thiosemicabazones and their nickel(II) and copper(II)
complexes. J. Inorg. Biochem. 2002, 90, 113–126.
12. Chandra, S.; Gupta, L. K.; Agrawal, S. Synthesis, spectroscopic and
biological approach in the characterization of novel [N4] macrocyclic
ligand and its transition metal complexes. Trans. Met. Chem. 2007,
32, 558–563.
thermogravimetric studies. The complexes were
found to be thermally more stable than the parent
ligand. The maximum bacterial and fungal inhibition
was exhibited by Zn(II) complex, which can be used
for pharmaceutical application. Further testing of
these complexes has been undertaken.
ACKNOWLEDGMENTS
13. Dhumwad, S. D.; Gudasi, K. B.; Goudar, T. R. Synthesis and structural
characterization of biologically active metal-complexes of N(1)-
(N-morpholinoacetyl)-N(4)-phenyl thiosemicarbazide and 3,4-methy-
lenedioxybenzaldehyde thiosemicarbazone with oxovanadium(IV),
chromium(III), magnesium(II), iron(III), cobalt(II), nickel(II), copper(II),
cadmium(II), uranium(VI), thorium(IV) and silicon(IV). Ind. J. Chem.
1994, 33A, 320–342.
The authors sincerely thank Third World Academy
of Sciences, Italy, for U.V.=Visible spectrophotometer
EZ-201 (PerkinElmer, United States) through
research grant 00-047RG=CHE=AS.
14. Cronin, L.; McGregor, P. A.; Parsons, S.; Teat, S.; Gould, R. O.; White,
V. A.; Long, N. J.; Robertson, N. Synthesis, structure and complexa-
tion of a large 28-mer macrocycle containing two binding sites for
either anions or metal ions. Inorg. Chem. 2004, 43, 8023–8029.
15. Garg, B. S.; Kurup, M. R. P.; Jain, S. K.; Bhoon, Y. K. Spectroscopic
studies on copper(II) complexes derived from a substituted 2-acetyl-
pyridine thiosemicarbazone. Trans. Met. Chem. 1988, 13, 309–312.
16. Franco, E.; Lopez-Torros, E.; Mendiola, M. A.; Sevilla, M. T. Synthesis,
spectroscopic and cyclic avoltametry studies of copper(II) complexes
with open chain, cyclic and new macrocyclic thiosemicabazones.
Polyhedron. 2000, 19, 441–451.
17. Habibi, D.; Izadkhah, V. Synthesis of the new schiff base polyaza
macrocycles and their complexes with Cu2þ and Ni2þ. Phosphorus,
Sulphur and Silicon 2004, 179, 1197–1202.
18. Abou-Hussen, A. A.; El-Metwally, N. M.; Saad, E. M.; El-Asmy.
Spectral, magnetic, thermal and electrochemical studies on phthaloyl
bis(thiosemicarbazide) complexes. J. Coord. Chem. 2005, 58, 1735–
1749.
19. Chandra, S.; Sangeetika, X. EPR, magnetic and spectral studies of
copper(II) and nickel(II) complexes of schiff base macrocyclic ligand
derived from thiosemicarbazide and glyoxal. Spectrochim. Acta,
Part A 2004, 60, 147–153.
20. Lever, A. B. P. Inorganic Electronic Spectroscopy, 1st ed.; Elsevier:
Amsterdam, 1968.
21. Mishra, L.; Pandey, A. K. Coordination behavior of 1-(1-phenyl-
3-p-chlorophenyl)-pyrazolylcarboxaldehyde thiosemicarbazone with
cobalt(II), nickel(II), copper(II) and zinc(II). Synth. React. Inorg. Met.-
Org. Chem. 1991, 21, 1–16.
REFERENCES
1. Jasat, A.; Dolphin, D. Expanded porphyrins and their heterologs.
Chem. Rev. 1997, 97, 2267–2340.
2. Trommel, J.; Warncke, K.; Marzilli, L. Assessment of the existence of
hyper-long axial Co(II)-N bonds in cobalamine B(12) models by using
electron paramagnetic resonance spectroscopy. J. Am. Chem. Soc.
2001, 123, 3358–3366.
3. Salavati, M.; Niasari. Host (nanocage of zeolite-Y)=guest
(manganese(II), cobalt(II), nickel(II) and copper(II) complexes of 12
membered macrocyclic Schiff base ligand derived from thiosemicar-
bazide and glyoxal) nanocomposite materials: Synthesis, characteriza-
tion and catalytic oxidation of cyclohexene. J. Mol. Catal. A: Chem.
2008, 283, 120–128.
4. Chandra, S.; Gupta, L. K.; Sangeetika. Spectroscopic, cyclic voltam-
metric and biological studies of transition metal complexes with
mixed nitrogen-sulphur (NS) donor macrocyclic ligand derived from
thiosemicarbazide. Spectrochim. Acta 62A 2005, 453–463.
5. Al-Bari, M. M. A.; Chowdhury, M. K. B.; Hossen, M. F.; Hossain, M.
M.; Zakaria, C. M.; Ul Islam, M. A. Novel nickel cyclam complexes
with potent antimicrobial and cytotoxic properties. J. Appl. Sci. Res.
2007, 3(11), 1251–1261.
6. Herrea, A. M.; Kalayda, G. V.; Disch, J. S.; Wikstrom, J. P.;
Kerendovych, I. V.; Staples, R. J.; Campana, C. F.; Nazarenko, A.
Y.; Hass, T. E.; Rybak-Akimova, E. V. Reaction at azomethine C¼N
complexes of pyridine containing Schiff base macrocyclic ligand.
Dalton Trans. 2003, 4482–4492.
7. West, D. X.; Liberta, E.; Padhye, S. B.; Chikate, R. C.; Sonawane, B. P.;
Kumbar, A. S.; Yeranda, R. S. Thiosemicabazone complexes of
copper(II): Structural and biological studies. Coord. Chem. Rev.
1993, 123, 49–71.
8. West, D. X.; Padhye, S. B.; Sonawane, B. P. Structural and physical
correlations in the biological properties of transition metal heterocyc-
lic thiosemicarbazone and s-alkyl dithiocarbazate complexes. Struct.
Bonding 1991, 76, 1–50.
22. Lever, A. B. P. Inorganic Electronic Spectroscopy, 2nd ed.; Elsevier:
Amsterdam, 1984.
23. Mandal, S.; Das, G.; Singh, R.; Shukla, R.; Bhardwaz, P. Synthesis and
studies of Cu(II)-thiolate complex bioinorganic perspectives. Coord.
Chem. Rev. 1997, 160, 191–235.
24. Chandra, S.; Kumar, R. Synthesis, electrochemistry and spectral
studies on cobalt(II) and manganese(II) complexes with 12-, 14-,
15-, and 18-membered N4, N2O2S, N6 donor macrocyclic ligands.
Synth. React. Inorg. Met. Org. and Nano-Met. Chem. 2005, 35,
161–170.
9. Haidue, Y.; Silvestru, A. Metal complexes in cancer chemotherapy.
Coord. Chem. Rev. 1990, 99, 253–296.
473
Synthesis, Thermal Behavior, and Antimicrobial Activity