monosaccharide phosphates8 have also been the subject of
great interest as bioactive molecules.
routes to thiazoline-based difluoromethylphosphonate di-
esters. To test this, dithioester 1 was conveniently prepared
on a large scale (up to 15 g), according to a slightly modified
procedure described by Blackburn et al.17 and coupled with
some achiral or enantiopure â-amino alcohols. A summary
of these reactions is presented in Table 1.
The most common approaches to this class of phos-
phonates usually involve PCF2-based nucleophilic synthons
or radicals,9 although the gem-difluorination and phos-
phonyl radical addition techniques may also offer alternative
routes.10 A number of difluorophosphonylated systems have
also been prepared following the building block approach.11
Representative examples using simple carbocyclic acids
include phosphoenol pyruvate and sparfosic acid analogues;
the latter, also referred to as PALA, is a potent inhibitor of
ATCase.12
Table 1. Synthesis of Difluoromethylphosphonate Diesters
Linked to an N-â-Hydroxythioamido Group from Dithioester 1
In connection with our studies on the chemistry of
bifunctional organic compounds containing both phosphorus
and dithioester moieties,13 we anticipated that the methyl
difluoro(diethoxyphosphono)dithioacetate 1 should provide
a new synthesis of thiazolines appended with a PCF2-
function. Many biologically active natural products, including
derived peptides, incorporate thiazoline (and/or thiazole)
motifs in their structures,14 and consequently, the construction
of these rings has aroused considerable interest, as shown
by the number of methods available.15,16
We report herein utilization of the methyl ester of difluoro-
(diethoxyphosphono)dithioacetic acid 1 as an efficient N-
thioacylating reagent in order to open facile and flexible
(8) Berkowitz, D. B.; Eggen, M.; Shen, Q.; Sloss, D. G. J. Org. Chem.
1993, 58, 6174.
(9) (a) Otaka, A.; Miyoshi, K.; Burke, T. R., Jr.; Roller, P. P.; Kubota,
H.; Tamamura, H.; Fujii, N. Tetrahedron Lett. 1995, 36, 927. (b) Berkowitz,
D. B.; Sloss, D. G. J. Org. Chem. 1995, 60, 7047. (c) Lequeux, T. P.; Percy,
J. M. Synlett 1995, 361. (d) Berkowitz, D. B.; Eggen, M.; Shen, Q. R.;
Shoemaker, R. K. J. Org. Chem. 1996, 61, 4666. (e) Piettre, S. R.; Cabanas,
L. Tetrahedron Lett. 1996, 37, 5881. (f) Blades, K.; Lapoˆtre, D.; Percy, J.
M. Tetrahedron Lett. 1997, 38, 5895.
(10) (a) Differding, E.; Duthaler, R. O.; Krieger, A.; Ru¨egg, G. M.;
Schmit, C. Synlett 1991, 395. (b) Burke, T. R.; Smyth, M. S.; Nomizu, M.;
Otaka, A.; Roller, P. P. J. Org. Chem. 1993, 58, 1336. (c) Smyth, M. S.;
Burke, T. R., Jr. Tetrahedron Lett. 1994, 35, 551. (d) Herpin, T. F.;
Motherwell, W. B.; Roberts, B. P.; Roland, S.; Weibel, J. M. Tetrahedron
1997, 53, 15082. (e) Lequeux, T.; Lebouc, F.; Lopin, C.; Yang, H.; Gouhier,
G.; Piettre, S. R. Org. Lett. 2001, 3, 185.
(11) (a) Phillion, D. P.; Cleary, D. G. J. Org. Chem. 1992, 57, 2763. (b)
Nieschalk, J.; Batsanov, A. S.; O’Hagan, D.; Howard, J. A. Tetrahedron
1996, 52, 165. (c) Arnone, A.; Bravo, P.; Frigerio, M.; Viani, F.; Zappala,
C. Synthesis 1998, 1511. (d) Boivin, J.; Ramos, L.; Zard, S. Z. Tetrahedron
Lett. 1998, 39, 6877. (e) Blades, K.; Butt, A. H.; Cockerill, G. S.; Easterfield,
H. J.; Lequeux, T. P.; Percy, J. M. J. Chem. Soc., Perkin Trans. 1 1999,
3609. (f) Butt, A. H.; Percy, J. M.; Spencer, N. S. Chem. Commun. 2000,
1691. (g) Yokomatsu, T.; Katayama, S.; Shibuya, S. Chem. Commun. 2001,
1878.
(12) (a) Coutrot, Ph.; Grison, C.; Charbonnier-Ge´rardin, C. Tetrahedron
1992, 48, 9841. (b) Ben-Bari, M.; Dewynter, G.; Aymard, C.; Jei, T.;
Montero, J.-L. Phosphorus, Sulfur Silicon Relat. Elem. 1995, 105, 129. (c)
Morris, A. D.; Cordi, A. A. Synth. Comm. 1997, 27, 1259.
(13) (a) Masson, S. Phosphorus, Sulfur Silicon Relat. Elem. 1994, 95-
96, 127. (b) Leflemme, N.; Marchand, P.; Gulea, M.; Masson, S. Synthesis
2000, 1143.
(14) (a) McGowan, D. A.; Jordis, U.; Minster, D. K.; Hecht, S. M. J.
Am. Chem. Soc. 1977, 99, 8078. (b) Carmeli, S.; Moore, R. E.; Patterson,
G. M. L.; Corbet, T. H.; Valeriote, F. A. J. Am. Chem. Soc. 1990, 112,
8195. (c) Walker, M. A.; Heathcock, C. H. J. Org. Chem. 1992, 57, 5566.
(d) Bayer, A.; Freund, S.; Nicholson, G.; Jung, G. Angew. Chem., Int. Ed.
Engl. 1993, 32, 1336. (e) Parsons, R. L.; Heathcock, C. H. J. Org. Chem.
1994, 59, 4733. (f) Wipf, P.; Xu, W. J. Org. Chem. 1996, 61, 6556. (g)
Onoda, T.; Shirai, R.; Koiso, Y.; Iwasaki, S. Tetrahedron 1996, 52, 14543.
(h) Wipf, P.; Venkatraman, S. Synlett 1997, 1. (i) White, J. D.; Kim; T.-S.;
Nambu, M. J. Am. Chem. Soc. 1997, 119, 103. (j) Kuriyama, N.; Akaji,
K.; Kiso, Y. Tetrahedron 1997, 32, 8323. (k) Akaji, K.; Kiso, Y.
Tetrahedron 1999, 55, 10685. (l) Ramasamy, K. S.; Bandaru, R.; Averett,
D. J. Org. Chem. 2000, 65, 5849. (m) Ritter, T. K.; Wong, C.-H.
Tetrahedron Lett. 2001, 42, 615.
a Reactions conducted with 1 equivalent of triethylamine.
The reactions were carried out routinely at room temper-
ature by adding dithioester 1 dropwise to a stirred solution
of commercially available â-amino alcohols in dried di-
chloromethane (THF is also a suitable solvent). The excep-
tional reactivity18 of free amines was clearly evidenced by
the color change from red to orange-yellow shortly after
the addition was completed (entries 1-4, Table 1). Use of
triethylamine as a dehydrohalogenating agent allowed â-
hydroxyamine hydrochlorides to be similarly coupled, albeit
in longer reaction times (entries 5 and 6). The reaction rates
(15) (a) North, M.; Pattenden, G. Tetrahedron 1990, 46, 8267. (b)
Fukuyama. T.; Xu, L. J. Am. Chem. Soc. 1993, 115, 8449. (c) Boyce, R. J.;
Mulqueen, G. C.; Pattenden, G. Tetrahedron, 1995, 51, 7321. (d) Charrette,
A. B.; Chua, P. J. Org. Chem. 1998, 63, 908. (e) Ino, A.; Murabayashi, A.
Tetrahedron 1999, 55, 10271. (f) Raman, P.; Razavi, H.; Kelly, J. W. Org.
Lett. 2000, 2, 3289. (g) Wuts, P. G. M.; Northuis, J. M.; Kwan, T. A. J.
Org. Chem. 2000, 65, 9223. (h) Fernandez, X.; Fellous, R.; Dunach, E.
Tetrahedron Lett. 2000, 41, 3381.
(16) (a) Wipf, P.; Fritch, P. C. Tetrahedron Lett. 1994, 35, 5397. (b)
Lafargue, P.; Guenot, P.; Lellouche, J.-P. Synlett 1995, 171. (c) Wipf, P.;
Fritch, P. C. J. Am. Chem. Soc. 1996, 118, 12358. (d) Muir, J. C.; Pattenden,
G.; Ye, T. Tetrahedron Lett. 1998, 39, 2861.
(17) Blackburn, G. M.; Brown, D.; Martin, S. J. J. Chem. Res. 1985,
92.
(18) Metzner, P. Synthesis 1992, 1185.
844
Org. Lett., Vol. 4, No. 5, 2002