ARTICLE
WWW.POLYMERCHEMISTRY.ORG
6 Liu, Y.-L.; Hsiue, G. H.; Chiu, Y. S.; Jeng, R. J.; Perng, L. H.
J Appl Polym Sci 1996, 61, 613–621.
solvent was evaporated. The dimethyl allyloxymethylphosph-
onate was obtained in quantitative yield.
7 Levchik, S. V.; Weil, E. D. Adv Fire Retard Mater 2008, 41–66.
1H NMR (400 MHz, CDCl3, d): 3.72 (s, H5); 3.75 (d, H7); 4.03
(s, H3); 5.18-5.27 (dd, H1) and 5.82 (m, H2). 31P NMR (400
MHz, CDCl3, d): 24.03 (P-C).
8 Quittmann, U.; Lecamp, L.; El Khatib, W.; Youssef, B.; Bunel,
C. Macromol Chem Phys 2001, 202, 628–635.
9 Wang, Q.; Shi, W. Eur Polym J 2006, 42, 2261–2269.
10 Youssef, B.; Lecamp, L.; El Khatib, W.; Bunel, C.; Mortaigne,
B. Macromol Chem Phys 2003, 204, 1842–1850.
Synthesis of Diethyl-1-allylphosphonate (AP)
Into a flask equipped with a dean-starck, 6 ꢂ 10ꢀ2 mol (9.95
g) of triethyl phosphite was added to 9 ꢂ 10ꢀ2 mol (10.8 g)
of allyl bromide under nitrogen. The resulting solution was
stirred for 14 hrs at 80 ꢁC. The product was distilled under
reduced pressure (5 mmHg) with a yield of 95%.
11 Negrell-Guirao, C.; Boutevin, B. Macromolecules 2009, 42,
2446–2454.
12 Negrell-Guirao, C.; Boutevin, B.; David, G.; Fruchier, A.; Son-
nier, R.; Lopez-Cuesta, J. M. Polym Chem 2011, 2, 236–243.
13 Inoue, S.; Tamezawa, H.; Aota, H.; Matsumoto, A.;
Yokoyama, K.; Matoba, Y.; Shibano, M. Macromolecules 2011,
44, 3169–3173.
1H NMR (400 MHz, CDCl3, d): 1.05 (m, H7); 2.34 (m, H3);
3.83 (m, H6); 4.94 (m, H1) and 5.53 (m, H2). 31P NMR (400
39
ꢁ
MHz, CDCl3, d): 26.76 (P-C). Bp ¼ 102 C (11 mmHg).
14 Inoue, S.; Kumagai, T.; Tamezawa, H.; Aota, H.; Matsumoto,
A.; Yokoyama, K.; Matoba. Y.; Shibano, M. J Polym Sci Part A:
Polym Chem 2011, 49, 156–163.
Radical Copolymerization of Phosphonated-Bearing Allyl
Monomer with Maleic Anhydride or Dimethyl Maleate
Allyl monomer (3 ꢂ 10ꢀ3 mol) and 3 ꢂ 10ꢀ3 mol of
acceptor monomer (maleic anhydride or dimethyl maleate)
was added in acetonitrile (2.4 ꢂ 10ꢀ2 mol). The reaction
mixture was stirred at 70 ꢁC under nitrogen for 20 min.
Then, 5 mol % of AIBN initiator was added in several shots
(3 times, every 24 hrs). After 24 hrs, the product was pre-
cipitated in water to obtain a powder.
15 Inoue, S.; Kumagai, T.; Tamezawa, H.; Aota, H.; Matsumoto, A.;
Yokoyama, K.; Matoba, Y.; Shibano, M. Polym J 2011, 42, 716–721.
16 Kihara, K. Jpn Kokai Tokkyo Koho 05,301,939 (1993).
17 Decker, C.; Bianchi, C. Polym Int 2003, 52, 722.
18 Arbuzov, A. J. Russ Phys Chem 1906, 38, 687.
19 Boutevin, B.; Hervaud, Y.; Pietrasanta, Y. Phosphorus Sulfur
Relat Elem 1981, 11, 373–381.
20 Tayouo, R.; David, G.; Ameduri, B.; Roziere, J.; Roualdes, S.
Macromolecules 2010, 43, 5269–5276.
CONCLUSIONS
21 Yu, Z.; Zhu, W. X.; Cabasso, I. J Polym Sci Part A: Polym
Chem 1990, 28, 227–230.
The free radical copolymerization of maleic anhydride was
successfully carried out in the presence of allyl monomers
carrying phosphonate moieties, that is, diethyl phosphonate
or dioxaphosphorinane group. The free radical copolymeriza-
tion resulted in alternated copolymers with rather low mo-
lecular weights values. Interestingly, the kinetics of copoly-
merization were influenced by the phosphonate group of the
allyl monomers: the bulkier the phosphonate moieties, the
faster the polymerization rate and the higher the monomer
conversion. Furthermore, the close proximity between the
phosphonate moieties and the allyl double bond led to a
decrease of the electron-donating character of allyl monomer.
We also showed the occurrence of allyl transfer, by compari-
son with model free radical copolymerization, thus explain-
ing the low molecular weight values. Finally, the high content
of residue obtained from thermo gravimetric analysis proves
the potential efficiency of such copolymers as flame retard-
ant additives.
22 Jeanmaire, T.; Hervaud, Y.; Boutevin, B. Phosphorus Sulfur
Silicon Relat Elem 2002, 177, 1137–1145.
23 El Asri Z.; Chougrani, K.; Negrell-Guirao, C.; David, G.; Bou-
tevin, B.; Loubat, C. J Polym Sci Part A: Polym Chem 2008, 46,
4794–4803.
24 Bartlett, P. D.; Altschul, R. J Am Chem Soc 1945, 67, 816–822.
25 Schwan, T. C.; Price, C. C. J Polym Sci 1959, 40, 457–468.
26 Shigetomi, Y.; Ono, N.; Kato, H.; Oki, M. Polym J 1992, 24, 247.
27 Wasley, W. L.; Pittman, A. G.. J Polym Sci 1972, 10, 279.
28 Boutevin, B.; El Bachiri, A. Eur Polym J 1995, 31, 321.
29 Boutevin, B.; El Bachiri, A. Eur Polym J 1996, 32, 337.
30 Kappler, P.; Perillon, J. L. Eur Pat Appl 396,444 (1990).
31 Kappler, P.; Perillon, J. L.; Baudrand M. Eur Pat Appl.
599,712 (1994).
32 Kappler, P.; Perillon, J. L. Eur Pat Appl. 481,849, (1992).
33 Joensson, S.; Sundell, P. E.; Hultgren, J.; Sheng, D.; Hoyle,
C. E. Proc Int Conf Org Coat Sci Technol 1994, 225–252.
34 Skwarski, T.; Wodka, T. Polimery 1971, 16, 234–237.
35 Skwarski, T.; Wodka, T. Zesz Nauk Politech Lodz Wlok 1973,
26, 79–102.
REFERENCES AND NOTES
36 Levchik, S. V.; Weil, E. D. Polym Int 2005, 54, 11–35.
1 Horrocks, A. R. Rev Prog Color 1986, 16, 62–101.
37 Jiang, D. D.; Yao, Q.; McKinney, M. A.; Wilkie, C. A. Polym
2 Weil, E. D.; Levchik, S. V. J Fire Sci 2008, 26, 243–281.
Degrad Stab 1999, 63, 423–434.
3 Hoang, D.; Kim, J.; Jang, B. N. Polym Degrad Stab 2008, 93,
38 Camino, G.; Martinasso, C. L. Polym Degrad Stab 1990, 27,
2042–2047.
285–296.
4 Hoang, D.; Kim, J. Polym Degrad Stab 2008, 93, 36–42.
5 Levchik, S. V.; Weil, J. D. J Fire Sci 2006, 24, 345–364.
39 Gillis, R. G.; Horwood, J. F.; White, G. L. J Am Chem Soc
1958, 80, 2999–3002.
3910
JOURNAL OF POLYMER SCIENCE PART A: POLYMER CHEMISTRY 2011, 49, 3905–3910