Organic Letters
Letter
(1) Resonance energy (RE) in 1a was determined by the
COSNAR method.1a,5 The conjugation in 1a (RE = 8.3 kcal/
mol) is significantly lower than that in (i) N−CO planar amides
and (ii) analogous N-Ts amides (RE = 9.7 kcal/mol).
AUTHOR INFORMATION
■
Corresponding Author
ORCID
(2) The rotational profile of 1a was determined by systematic
rotation along the O−C−N−C dihedral angle. The energy
minimum is located at ca. 140° O−C−N−C angle (τ = 31.21°;
χN = 19.08°) in a syn O−C−N−S conformation (ca. 20.9° O−
C−N−S dihedral angle). The energy maximum is at ca. 0° O−
C−N−C dihedral angle (τ = 14.07°; χN = 22.92°) in an
antiperiplanar O−C−N−S destabilizing conformation (157.1°
dihedral angle, 3.90 kcal/mol). These values can be compared
with the barrier of 7.01 kcal/mol in N-Ts amides. The less
favorable conformation at 180° O−C−N−C dihedral angle is
defined by a τ = 2.57°, χN = 6.80° geometry (6.8° O−C−N−S
angle).
(3) The difference in N-/O-protonation affinities (ΔPA)
determines that protonation at the acyl oxygen is strongly
favored in N-Tf amide 1a (ΔPA = 12.4 kcal/mol), which can be
compared with N-Ts amides (ΔPA = 9.3 kcal/mol), and is
consistent with the strong electron-withdrawing effect of the N-
Tf group. Protonation of the amide oxygen is favored over
sulfonamide oxygen atoms (ΔPA = 14.8, 17.5 kcal/mol). Thus
the activation of the N-acyl group in 1a by N-protonation is
unlikely.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Rutgers University and the NSF (CAREER CHE-1650766) are
gratefully acknowledged for support. We thank the Wroclaw
Center for Networking and Supercomputing (Grant Number
WCSS159).
REFERENCES
■
(1) (a) Greenberg, A.; Breneman, C. M.; Liebman, J. F. The Amide
Linkage: Structural Significance in Chemistry, Biochemistry and Materials
Science; Wiley-VCH: New York, 2003. (b) Pattabiraman, V. R.; Bode, J.
W. Nature 2011, 480, 471. (c) Ruider, S.; Maulide, N. Angew. Chem.,
Int. Ed. 2015, 54, 13856.
(2) For reviews on N−C functionalization, see: (a) Meng, G.; Shi, S.;
Szostak, M. Synlett 2016, 27, 2530. (b) Liu, C.; Szostak, M. Chem. - Eur.
J. 2017, 23, 7157. (c) Takise, R.; Muto, K.; Yamaguchi, J. Chem. Soc.
Rev. 2017, 46, 5864. (d) Dander, J. E.; Garg, N. K. ACS Catal. 2017, 7,
1413. (e) Kaiser, D.; Bauer, A.; Lemmerer, M.; Maulide, N. Chem. Soc.
Rev. 2018, 47, 7899. (f) Meng, G.; Szostak, M. Eur. J. Org. Chem. 2018,
2018, 2352.
(3) (a) Science of Synthesis: Cross-Coupling and Heck-Type Reactions;
Molander, G. A., Wolfe, J. P., Larhed, M., Eds.; Thieme: Stuttgart,
Germany, 2013. (b) Metal-Catalyzed Cross-Coupling Reactions and
Clearly, the distortion and activation parameters of the amide
bond in triflamides emphasize rotational inversion and
electronic activation as defining factors that favor selective
metal insertion into the N−C(O) bond under mild conditions.
In closing, we have reported the first Suzuki−Miyaura cross-
coupling of trifluoromethanesulfonamides (triflamides) by
highly selective N−C(O) amide bond cleavage. Most crucially,
this manuscript introduces N-Tf amides as novel amide bond
precursors that favor metal insertion under exceedingly mild
conditions. The method enables the catalytic synthesis of
ketones as a serious alternative to Weinreb amides and related
methods that have long been a mainstay of chemical synthesis.
We have also demonstrated the first example of acyl−aryl
Negishi cross-coupling using simple N-acyclic amides. Structural
and computational studies have provided evidence of the
ground-state destabilization pathway in the selective activation
of the amide N−C(O) bond. At the center of the high reactivity
of N-Tf amides is the powerful electron-withdrawing effect of
the triflyl group. Our data strongly suggest that triflamides
should be routinely considered as amide bond precursors in the
growing arsenal of amide bond cross-coupling.
̈
More; de Meijere, A., Brase, S., Oestreich, M., Eds.; Wiley: New York,
2014. (c) New Trends in Cross-Coupling; Colacot, T. J., Ed.; The Royal
Society of Chemistry: Cambridge, U.K., 2015.
(4) Pauling, L. The Nature of the Chemical Bond; Oxford University
Press: London, 1940.
(5) For pertinent studies on amide destabilization in N−C cross-
coupling, see: (a) Szostak, R.; Shi, S.; Meng, G.; Lalancette, R.; Szostak,
M. J. Org. Chem. 2016, 81, 8091. (b) Pace, V.; Holzer, W.; Meng, G.;
Shi, S.; Lalancette, R.; Szostak, R.; Szostak, M. Chem. - Eur. J. 2016, 22,
14494. (c) Szostak, R.; Meng, G.; Szostak, M. J. Org. Chem. 2017, 82,
6373. (d) Meng, G.; Shi, S.; Lalancette, R.; Szostak, R.; Szostak, M. J.
Am. Chem. Soc. 2018, 140, 727.
(6) For representative acyl coupling, see: (a) Hie, L.; Fine Nathel, N.
F.; Shah, T. K.; Baker, E. L.; Hong, X.; Yang, Y. F.; Liu, P.; Houk, K. N.;
Garg, N. K. Nature 2015, 524, 79. (b) Meng, G.; Szostak, M. Org. Lett.
2015, 17, 4364. (c) Meng, G.; Shi, S.; Szostak, M. ACS Catal. 2016, 6,
7335. (d) Meng, G.; Lei, P.; Szostak, M. Org. Lett. 2017, 19, 2158.
(e) Amani, J.; Alam, R.; Badir, S.; Molander, G. A. Org. Lett. 2017, 19,
2426. For excellent reductive coupling, see: (f) Ni, S.; Zhang, W.; Mei,
H.; Han, J.; Pan, Y. Org. Lett. 2017, 19, 2536. For further examples, see:
(g) Lei, P.; Meng, G.; Ling, Y.; An, J.; Szostak, M. J. Org. Chem. 2017,
82, 6638 and references cited therein .
(7) For representative decarbonylative coupling, see: (a) Meng, G.;
Szostak, M. Angew. Chem., Int. Ed. 2015, 54, 14518. (b) Shi, S.; Meng,
G.; Szostak, M. Angew. Chem., Int. Ed. 2016, 55, 6959. (c) Meng, G.;
Szostak, M. Org. Lett. 2016, 18, 796. (d) Dey, A.; Sasmal, S.; Seth, K.;
Lahiri, G. K.; Maiti, D. ACS Catal. 2017, 7, 433. (e) Yue, H.; Guo, L.;
Liao, H. H.; Cai, Y.; Zhu, C.; Rueping, M. Angew. Chem., Int. Ed. 2017,
56, 4282. (f) Yue, H.; Guo, L.; Lee, S. C.; Liu, X.; Rueping, M. Angew.
Chem., Int. Ed. 2017, 56, 3972. (g) Srimontree, W.; Chatupheeraphat,
A.; Liao, H. H.; Rueping, M. Org. Lett. 2017, 19, 3091 and references
cited therein .
ASSOCIATED CONTENT
■
S
* Supporting Information
The Supporting Information is available free of charge on the
Experimental procedures and characterization data
Accession Codes
CCDC 1882900 contains the supplementary crystallographic
data for this paper. These data can be obtained free of charge via
Crystallographic Data Centre, 12 Union Road, Cambridge
CB2 1EZ, UK; fax: +44 1223 336033.
D
Org. Lett. XXXX, XXX, XXX−XXX