3688 J. Phys. Chem. A, Vol. 106, No. 15, 2002
Klink et al.
literature for organic complexes of Eu3+, include 2.3 ms with a
4-(phenylethynyl)pyridine-2,6-dicarboxylic acid as a ligand43
and 2.0 ms with a bisisoquinoline-N-oxide based cryptate.44
Second, if we consider the overall quantum yield of [(Eu)1]bfa
and [(Eu)1]hfa of approximately 0.3, then the calculated φLn
value of these complexes of approximately 0.7 implies that the
product of the efficiencies of the two preceding steps, i.e.
intersystem crossing from the antenna singlet to the triplet state
and energy transfer from the triplet state to the Eu3+ ion, is
only approximately 0.4. At first sight this is rather unexpected:
a reported value for the intersystem crossing quantum yield of
bfa in Gd(bfa)3 is 0.84,9 whereas the short antenna-Eu3+ distance
would ensure a fast and complete energy transfer. As was
mentioned earlier, a problem that has often been encountered
in the sensitization of Eu3+ is a competing photon-induced
efficiency of the sensitized emission is not only determined by
the distance from the antenna to the lanthanide ion, and by the
requirements of the antenna triplet energy level, but also by
the influence of the coordinated antenna on the radiative lifetime
of the complexed Eu3+ ion.
Acknowledgment. The authors express their gratitude to
Professor Jan Verhoeven (University of Amsterdam, The
Netherlands) for his valuable comments. This research has been
supported financially by the Council for Chemical Sciences of
The Netherlands Organization for Scientific Research (CW-
NWO).
References and Notes
(1) Mukkala, V.-M.; Helenius, M.; Hemmila¨, I.; Kankare, J.; Takalo,
H. HelV. Chim. Acta 1993, 76, 1361.
(2) (a) Steemers, F. J.; Verboom, W.; Reinhoudt, D. N.; van der Tol,
E. B.; Verhoeven, J. W. J. Am. Chem. Soc. 1995, 117, 9408. (b) Steemers,
F. J.; Meuris, H. G.; Verboom, W.; Reinhoudt, D. N. J. Org. Chem. 1997,
62, 4229.
(3) (a) Slooff, L. H.; Polman, A.; Oude Wolbers, M. P.; van Veggel,
F. C. J. M.; Reinhoudt, D. N.; Hofstraat, J. W. J. Appl. Phys. 1997, 83,
497. (b) Slooff, L. H.; Polman, A.; Klink, S. I.; Hebbink, G. A.; Grave, L.;
van Veggel, F. C. J. M.; Reinhoudt, D. N.; Hofstraat, J. W. Optical Mater.
2000, 14, 101.
(4) (a) Gschneidner, K. A.; Eyring, L. R. Handbook on the Physics
and Chemistry of Rare Earths; North-Holland Publishing Company:
Amsterdam, 1979. (b) Sabbatini, N.; Guardigli, M.; Lehn, J.-M. Coord.
Chem. ReV. 1993, 123, 201, and references therein.
electron-transfer process from the antenna to Eu3+ 45
, due to the
low reduction potential of Eu3+ in comparison with other
trivalent lanthanide ions. In the case of [(Eu)1]bfa and [(Eu)-
1]hfa the singlet and the triplet excited states of the antenna
may be partially deactivated by an electron transfer to Eu3+ 46
,
instead of populating the triplet excited state and the Eu3+ ion
excited states, respectively.47
Based on Equation 448 the driving force can be estimated for
the charge transfer of the excited sensitizer to Eu3+
.
∆GCT ) E(sens./sens-1) - E(sens-1*) - E(Eu3+/Eu2+) (4)
(5) (a) Sato, S.; Wada, M. Bull. Chem. Soc. Jpn. 1970, 43, 1955. (b)
Crosby, G. A.; Whan, R. E.; Alire, R. M. J. Chem. Phys. 1961, 34, 743.
(6) (a) Tanaka, M.; Yamagughi, G.; Shiokawa, J.; Yamanaka, C. Bull.
Chem. Soc. Jpn. 1970, 43, 549. (b) Haynes, A. V.; Drickamer, H. G. J.
Chem. Phys. 1982, 76, 114.
With ∆GCT the change in free energy of the electron transfer,
E(sens./sens-1) the oxidation potential of the sensitizer, E(sens-1*)
the singlet or triplet energy of the sensitizer, and E(Eu3+/Eu2+
)
(7) Klink, S. I. Keizer, H.; van Veggel, F. C. J. M. Angew. Chem., Int.
the reduction potential. Please note that in this paragraph we
use sens-1 for the â-diketonate and sens. for the oxidized
sensitizer, whereas in the rest of the article we follow the
conventions in this field. With E(sens./sens-1) of 1.60 and 1.40
V (vs NHE) for bfa/bfa-1 and hfa/hfa-1, respectively,49 and the
1-electron reduction potential of Eu3+ equal to -0.36 V50 this
gives a driving force for bfa of -1.51 eV and -0.69 eV for
energy transfer from the singlet and triplet excited state,
respectively, and -1.83 eV and -0.97 eV for hfa. These
estimates show that deactivation of the antenna seems thermo-
dynamically feasible.51
Although the strategy discussed in this paragraph is not
limited to Eu3+, the radiative rate of Eu3+ is relatively easily
influenced, because its emission spectrum contains a hypersensi-
tive transition. Whereas the luminescence intensities of ‘ordi-
nary’ ED transitions can vary by a factor of 2-3 depending on
the coordination sphere, a hypersensitive ED transition can
increase by a factor of up to 200.27 It is through this transition,
that we have influenced the radiative rate of the complexed Eu3+
ion and thus φLn.
Ed. 2000, 39, 4319.
(8) Werts, M. H. V.; Woudenberg, R. H.; Emmerink, P. G.; van Gassel,
R.; Hofstraat, J. W.; Verhoeven, J. W. Angew. Chem., Int. Ed. 2000, 39,
4542.
(9) (a) Tobita, S.; Arakawa, M.; Tanaka, I. J. Phys. Chem. 1984, 88,
2697. (b) Tobita, S.; Arakawa, M.; Tanaka, I. J. Phys. Chem. 1985, 89,
5649.
(10) Klink, S. I.; Grave, L.; Reinhoudt, D. N.; van Veggel, F. C. J. M.;
Werts, M. H. V.; Geurts, F. A. J. J. Phys. Chem. A 2000, 104, 5457.
(11) Werts, M. H. V.; Hofstraat, J. W.; Geurts, F. A. J.; Verhoeven, J.
W. Chem. Phys. Lett. 1997, 276, 196.
(12) (a) Oude Wolbers, M. P.; van Veggel, F. C. J. M.; Peters, F. G.
A.; van Beelen, E. S. E.; Hofstraat, J. W.; Geurts, F. A. J.; Reinhoudt, D.
N. Chem. Eur. J. 1998, 4, 772. (b) Klink, S. I, Oude Alink, P.; Grave, L.;
Peters, F. G. A.; Hofstraat, J. W.; Geurts, F.; van Veggel, F. C. J. M. J.
Chem. Soc., Perkin Trans. 2 2001, 363.
(13) Dexter, D. L. J. Chem. Phys. 1953, 21, 836.
(14) Streck, W.; Wierzchaczewski, M. Chem. Phys. 1981, 58, 185.
(15) (a). Haas, Y.; Stein, G. J. Phys. Chem. 1971, 75, 3668. (b). Haas,
Y.; Stein, G. J. Phys. Chem. 1971, 75, 3677.
(16) (a) Oude Wolbers, M. P.; van Veggel, F. C. J. M.; Snellink-Rue¨l,
B. H. M.; Hofstraat, J. W.; Geurts, F. A. J.; Reinhoudt, D. N. J. Am. Chem.
Soc. 1997, 119, 138. (b) Oude Wolbers, M. P.; van Veggel, F. C. J. M.;
Hofstraat, J. W.; Geurts, F. A. J.; Reinhoudt, D. N. J. Chem. Soc., Perkin
Trans. 2 1997, 2275. (c) Oude Wolbers, M. P.; van Veggel, F. C. J. M.;
Snellink-Rue¨l, B. H. M.; Hofstraat, J. W.; Geurts, F. A. J.; Reinhoudt, D.
N. J. Chem. Soc., Perkin Trans. 2 1998, 2141.
Conclusion
(17) Klink, S. I.; Hebbink, G. A.; Grave, L.; Peters, F. G. A.; Van
Veggel, F. C. J. M.; Reinhoudt, D. N.; Hofstraat, J. W. Eur. J. Org. Chem.
2000, 10, 1923.
The synergistic complexation of Eu3+ by the bidentate
antenna and the polydentate ligand has led to the construction
of efficiently emitting Eu3+ complexes. In these complexes the
antenna-lanthanide ion distance has been minimized and the
Eu3+ ion is completely shielded from the solvent. The ternary
â-diketonate complexes combine high association constants (K)
and high overall luminescence quantum yields (φSE), for
example K ) 3.8 ( 0.2 × 107 M-1 and φSE ) 0.29 for [(Eu)-
1]bfa. The photophysical studies of the ternary complexes have
shown that there is no direct energy transfer from the antenna
triplet to the 5D0 state, but that instead the 5D0 state is populated
(18) Typical structure of (Eu)1 obtained from a molecular modeling
simulation in a box of OPLS methanol using the CHARMM force field. In
the simulation, the n-butoxypropyl moieties have been replaced by methyl
groups. The hydrogen atoms have been removed for clarity. For the
simulation the same procedure was followed as reported in: van Veggel,
F. J. C. M.; Reinhoudt, D. N. Recl. TraV. Chim. Pays-Bas 1995, 114, 387.
The Lennard-Jones parameter for Eu3+ was taken from: van Veggel, F. C.
J. M.; Reinhoudt, D. N. Chem. Eur. J. 1999, 5, 90.
(19) Weissman, S. I. J. Chem. Phys. 1942, 10, 214.
(20) Filipescu, N.; Sager, W. F.; Serafin, F. A. J. Phys. Chem. 1964,
68, 3324.
(21) Melby, L. R.; Rose, N. J.; Abramson, E.; Caris, J. C. J. Am. Chem.
Soc. 1964, 86, 5118.
5
via the D1 state. It has been demonstrated that the overall